论文标题

理性的非交叉Coxeter-Catalan组合学

Rational Noncrossing Coxeter-Catalan Combinatorics

论文作者

Galashin, Pavel, Lam, Thomas, Trinh, Minh-Tâm Quang, Williams, Nathan

论文摘要

我们解决了Coxeter-Catalan组合学中的两个开放问题。首先,我们使用杰出子词的组合介绍了任何有限的Coxeter组的一个理性非交叉对象。其次,我们给出了这些非交叉加泰罗尼亚对象的类型均匀证据,该对象使用相关的Hecke代数的特征理论和Lusztig的Exotic Fourier变换来计算合理的Coxeter-catalan数字。我们解决了合理的非交叉停车对象的相同问题。

We solve two open problems in Coxeter-Catalan combinatorics. First, we introduce a family of rational noncrossing objects for any finite Coxeter group, using the combinatorics of distinguished subwords. Second, we give a type-uniform proof that these noncrossing Catalan objects are counted by the rational Coxeter-Catalan number, using the character theory of the associated Hecke algebra and the properties of Lusztig's exotic Fourier transform. We solve the same problems for rational noncrossing parking objects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源