论文标题
通过质量多样性优化解决神经建筑搜索
Tackling Neural Architecture Search With Quality Diversity Optimization
论文作者
论文摘要
神经建筑搜索(NAS)已被广泛研究,并已成长为具有重大影响的研究领域。虽然经典的单目标NAS搜索具有最佳性能的体系结构,但多目标NAS考虑了应该同时优化的多个目标,例如,将沿验证错误沿验证错误最小化。尽管在多目标NAS领域已经取得了很大的进步,但我们认为实际关注的实际优化问题与多目标NAS试图解决的优化问题之间存在一些差异。我们通过将多目标NAS问题作为质量多样性优化(QDO)问题来解决这一差异,并引入了三种质量多样性NAS优化器(其中两个属于多额度优化器组),这些质量优化器均搜索高度且多样化的体系结构,这些体系结构可最佳地用于应用程序特定于应用程序的NICHES,例如,等等,例如,硬化。通过将这些优化器与它们的多目标对应物进行比较,我们证明了质量多样性总体上优于多目标NA在解决方案和效率方面。我们进一步展示了应用程序和未来的NAS研究如何在QDO上蓬勃发展。
Neural architecture search (NAS) has been studied extensively and has grown to become a research field with substantial impact. While classical single-objective NAS searches for the architecture with the best performance, multi-objective NAS considers multiple objectives that should be optimized simultaneously, e.g., minimizing resource usage along the validation error. Although considerable progress has been made in the field of multi-objective NAS, we argue that there is some discrepancy between the actual optimization problem of practical interest and the optimization problem that multi-objective NAS tries to solve. We resolve this discrepancy by formulating the multi-objective NAS problem as a quality diversity optimization (QDO) problem and introduce three quality diversity NAS optimizers (two of them belonging to the group of multifidelity optimizers), which search for high-performing yet diverse architectures that are optimal for application-specific niches, e.g., hardware constraints. By comparing these optimizers to their multi-objective counterparts, we demonstrate that quality diversity NAS in general outperforms multi-objective NAS with respect to quality of solutions and efficiency. We further show how applications and future NAS research can thrive on QDO.