论文标题

朝着保护隐私,实时和无损的功能匹配

Towards Privacy-Preserving, Real-Time and Lossless Feature Matching

论文作者

Meng, Qiang, Zhou, Feng

论文摘要

大多数视觉检索应用程序商店都有用于下游匹配任务的向量。这些向量从可以监视用户信息的地方,如果不仔细保护,将导致隐私泄漏。为了减轻隐私风险,当前的作品主要利用不可变形的转换或完全加密算法。但是,基于转换的方法通常无法实现令人满意的匹配性能,而密码系统则遭受了大量的计算开销。此外,应提高当前方法的安全水平,以面对潜在的对手攻击。为了解决这些问题,本文提出了一个称为SecureVector的插件模块,该模块通过随机排列,4L-DEC转换和现有同型加密技术来保护功能。 SecureVector首次实现了实时的实时和无损的功能匹配,并且安全级别高于当前最新的功能。关于面部识别,重新识别,图像检索和隐私分析的广泛实验证明了我们方法的有效性。鉴于该领域的公共项目有限,我们的方法和实施的基准的代码是在https://github.com/irvingmeng/securevector中进行开源的。

Most visual retrieval applications store feature vectors for downstream matching tasks. These vectors, from where user information can be spied out, will cause privacy leakage if not carefully protected. To mitigate privacy risks, current works primarily utilize non-invertible transformations or fully cryptographic algorithms. However, transformation-based methods usually fail to achieve satisfying matching performances while cryptosystems suffer from heavy computational overheads. In addition, secure levels of current methods should be improved to confront potential adversary attacks. To address these issues, this paper proposes a plug-in module called SecureVector that protects features by random permutations, 4L-DEC converting and existing homomorphic encryption techniques. For the first time, SecureVector achieves real-time and lossless feature matching among sanitized features, along with much higher security levels than current state-of-the-arts. Extensive experiments on face recognition, person re-identification, image retrieval, and privacy analyses demonstrate the effectiveness of our method. Given limited public projects in this field, codes of our method and implemented baselines are made open-source in https://github.com/IrvingMeng/SecureVector.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源