论文标题

RBP置:类别级姿势估计的残留边界框投影

RBP-Pose: Residual Bounding Box Projection for Category-Level Pose Estimation

论文作者

Zhang, Ruida, Di, Yan, Lou, Zhiqiang, Manhardt, Fabian, Tombari, Federico, Ji, Xiangyang

论文摘要

类别级的对象姿势估计旨在预测已知类别集的任意对象的6D姿势以及3D度量的大小。最近的方法利用了先验改编的形状,以将观察到的点云映射到规范空间中,并应用Umeyama算法以恢复姿势和大小。然而,它们的形状先前的整合策略会间接提高姿势估计,从而导致姿势敏感的特征提取和推理速度缓慢。为了解决这个问题,在本文中,我们提出了一种新型的几何形状引导的残留对象边界框投影网络RBP置式rbp pose,它共同预测对象姿势和残留矢量,描述了从形状优先指示的对象表面投影到边界框中的位移,向真实的表面投影。残留向量的这种定义本质上是零均值且相对较小,并且明确封装了3D对象的空间提示,以进行稳健和准确的姿势回归。我们强制执行几何学意识的一致性项,以使预测的姿势和残留向量对齐以进一步提高性能。

Category-level object pose estimation aims to predict the 6D pose as well as the 3D metric size of arbitrary objects from a known set of categories. Recent methods harness shape prior adaptation to map the observed point cloud into the canonical space and apply Umeyama algorithm to recover the pose and size. However, their shape prior integration strategy boosts pose estimation indirectly, which leads to insufficient pose-sensitive feature extraction and slow inference speed. To tackle this problem, in this paper, we propose a novel geometry-guided Residual Object Bounding Box Projection network RBP-Pose that jointly predicts object pose and residual vectors describing the displacements from the shape-prior-indicated object surface projections on the bounding box towards the real surface projections. Such definition of residual vectors is inherently zero-mean and relatively small, and explicitly encapsulates spatial cues of the 3D object for robust and accurate pose regression. We enforce geometry-aware consistency terms to align the predicted pose and residual vectors to further boost performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源