论文标题

计算技工的几何深度学习第二部分:可解释的多尺度可塑性的图形嵌入

Geometric deep learning for computational mechanics Part II: Graph embedding for interpretable multiscale plasticity

论文作者

Vlassis, Nikolaos N., Sun, WaiChing

论文摘要

经典可塑性模型的历史依赖性行为通常是根据现象学定律进化的内部变量驱动的。解释这些内部变量如何代表变形的历史,缺乏直接测量这些内部变量进行校准和验证的困难,以及这些现象学定律的弱物理基础一直被批评为创建现实模型的障碍。在这项工作中,将图形数据(例如有限元解决方案)上的几何机器学习用作建立非线性尺寸还原技术和可塑性模型之间联系的手段。基于几何学习的编码可以将丰富的时间历史数据嵌入到低维的欧几里得空间上,以便可以在嵌入式特征空间中预测塑性变形的演变。然后,相应的解码器可以将这些低维内变量转换回加权图,从而可以观察和分析塑性变形的主导拓扑特征。

The history-dependent behaviors of classical plasticity models are often driven by internal variables evolved according to phenomenological laws. The difficulty to interpret how these internal variables represent a history of deformation, the lack of direct measurement of these internal variables for calibration and validation, and the weak physical underpinning of those phenomenological laws have long been criticized as barriers to creating realistic models. In this work, geometric machine learning on graph data (e.g. finite element solutions) is used as a means to establish a connection between nonlinear dimensional reduction techniques and plasticity models. Geometric learning-based encoding on graphs allows the embedding of rich time-history data onto a low-dimensional Euclidean space such that the evolution of plastic deformation can be predicted in the embedded feature space. A corresponding decoder can then convert these low-dimensional internal variables back into a weighted graph such that the dominating topological features of plastic deformation can be observed and analyzed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源