论文标题

关于多参数持久模块等级分解的瓶颈稳定性

On the bottleneck stability of rank decompositions of multi-parameter persistence modules

论文作者

Botnan, Magnus Bakke, Oppermann, Steffen, Oudot, Steve, Scoccola, Luis

论文摘要

现代拓扑数据分析的重要部分与POSET表示代数不变的设计和研究有关 - 通常称为多参数持久性模块。这样一个不变的是最小的秩分解,它通过单个有序的矩形可分离模块来编码持久模块的所有结构形态的等级,该模块被解释为签名的条形码。该签名的条形码将持久性条形码的概念从一个参数持久性到任何数量的参数概括,从而提出了其瓶颈稳定性的问题。我们在本文中表明,在签名的条形码之间签名的瓶颈匹配的自然概念下,最小的等级分解并不稳定。我们通过将焦点转换为秩精确分解来解决这一问题,这是一个相关的符号条形码,该条形码是由模块相对于所谓的秩精确结构的最小射击分辨率引起的,我们被证明在签名的匹配下是瓶颈稳定的。作为证据的一部分,我们获得了独立关注的两个中间结果:我们计算有限呈现的多参数持久模块的等级确切结构的全局维度,并且我们证明了可挂接可分解模块的瓶颈稳定性结果。我们还为等级分解的大小提供了一个界限,该分解在通常的最小投影分辨率的大小上是多项式的,我们证明了通过签名匹配的概念引起的差异函数的普遍性结果,并且在两参数情况下,我们计算了与索引索引的upsexsexsexexexsexsexsepsectectectectecte的全局尺寸。这组结果结合了拓扑数据分析和POSET的表示理论的概念,我们认为与这两个领域有关。

A significant part of modern topological data analysis is concerned with the design and study of algebraic invariants of poset representations -- often referred to as multi-parameter persistence modules. One such invariant is the minimal rank decomposition, which encodes the ranks of all the structure morphisms of the persistence module by a single ordered pair of rectangle-decomposable modules, interpreted as a signed barcode. This signed barcode generalizes the concept of persistence barcode from one-parameter persistence to any number of parameters, raising the question of its bottleneck stability. We show in this paper that the minimal rank decomposition is not stable under the natural notion of signed bottleneck matching between signed barcodes. We remedy this by turning our focus to the rank exact decomposition, a related signed barcode induced by the minimal projective resolution of the module relative to the so-called rank exact structure, which we prove to be bottleneck stable under signed matchings. As part of our proof, we obtain two intermediate results of independent interest: we compute the global dimension of the rank exact structure on the category of finitely presentable multi-parameter persistence modules, and we prove a bottleneck stability result for hook-decomposable modules. We also give a bound for the size of the rank exact decomposition that is polynomial in the size of the usual minimal projective resolution, we prove a universality result for the dissimilarity function induced by the notion of signed matching, and we compute, in the two-parameter case, the global dimension of a different exact structure related to the upsets of the indexing poset. This set of results combines concepts from topological data analysis and from the representation theory of posets, and we believe is relevant to both areas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源