论文标题

神经符号学习:眼科中的原理和应用

Neuro-Symbolic Learning: Principles and Applications in Ophthalmology

论文作者

Hassan, Muhammad, Guan, Haifei, Melliou, Aikaterini, Wang, Yuqi, Sun, Qianhui, Zeng, Sen, Liang, Wen, Zhang, Yiwei, Zhang, Ziheng, Hu, Qiuyue, Liu, Yang, Shi, Shunkai, An, Lin, Ma, Shuyue, Gul, Ijaz, Rahee, Muhammad Akmal, You, Zhou, Zhang, Canyang, Pandey, Vijay Kumar, Han, Yuxing, Zhang, Yongbing, Xu, Ming, Huang, Qiming, Tan, Jiefu, Xing, Qi, Qin, Peiwu, Yu, Dongmei

论文摘要

近年来,随着新颖的策略和应用,神经网络一直在迅速扩展。然而,尽管不可避免地会针对关键应用程序来解决这些挑战,但在神经网络技术中仍未解决诸如神经网络技术中的挑战。已经通过用符号表示来表示和嵌入域知识来克服神经网络计算中的挑战。因此,出现了神经符号学习(Nesyl)概念,其中结合了符号表示的各个方面,并将常识带入神经网络(Nesyl)。在可解释性,推理和解释性至关重要的领域中,例如视频和图像字幕,提问和推理和推理,健康信息学和基因组学,Nesyl表现出了有希望的结果。这篇综述介绍了一项有关最先进的Nesyl方法的全面调查,其原理,机器和深度学习算法的进步,诸如Opthalmology之类的应用以及最重要的是该新兴领域的未来观点。

Neural networks have been rapidly expanding in recent years, with novel strategies and applications. However, challenges such as interpretability, explainability, robustness, safety, trust, and sensibility remain unsolved in neural network technologies, despite the fact that they will unavoidably be addressed for critical applications. Attempts have been made to overcome the challenges in neural network computing by representing and embedding domain knowledge in terms of symbolic representations. Thus, the neuro-symbolic learning (NeSyL) notion emerged, which incorporates aspects of symbolic representation and bringing common sense into neural networks (NeSyL). In domains where interpretability, reasoning, and explainability are crucial, such as video and image captioning, question-answering and reasoning, health informatics, and genomics, NeSyL has shown promising outcomes. This review presents a comprehensive survey on the state-of-the-art NeSyL approaches, their principles, advances in machine and deep learning algorithms, applications such as opthalmology, and most importantly, future perspectives of this emerging field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源