论文标题
识别星际对象影响陨石坑
Identifying Interstellar Object Impact Craters
论文作者
论文摘要
近年来,两个星际对象(ISO)的发现对约束其物理特性和形成背后的机制产生了重大兴趣。但是,它们通过我们的太阳系的短暂通道只允许不完整的表征。我们研究了识别可能由影响地面太阳系体的ISO产生的陨石坑的途径,并特别注意月球。与小行星和彗星相比,ISO的一个独特特征是它们相对较高的遭遇速度。局部恒星运动学表明,陆地太阳系物体应该经历超过100 km/s的订单统一ISO影响。通过对不同质量和冲击速度的弹丸进行流体动力学模拟,高达100 km/s,我们表明了晚期的等效性如何决定了瞬态火山口尺寸仅仅是不足以推断弹丸的速度。另一方面,固定直径的陨石坑内的熔体体积可能是识别ISO陨石坑的潜在途径,因为更快的影响会产生更多的熔体。该方法要求熔融体积尺度具有弹丸的能量,而火山口直径尺度则以点源极限(亚能源)。鉴于太阳能系统中可能只有少数ISO陨石坑,而瞬态火山口尺寸至少不是最高100 km/s的撞击速度的特征,因此对ISO陨石坑的识别证明了一项具有挑战性的任务。一旦可以原位分析大量材料,熔体体积和高压质学可能是诊断特征。
The discoveries of two Interstellar Objects (ISOs) in recent years has generated significant interest in constraining their physical properties and the mechanisms behind their formation. However, their ephemeral passages through our Solar System permitted only incomplete characterization. We investigate avenues for identifying craters that may have been produced by ISOs impacting terrestrial Solar System bodies, with particular attention towards the Moon. A distinctive feature of ISOs is their relatively high encounter velocity compared to asteroids and comets. Local stellar kinematics indicate that terrestrial Solar System bodies should have experienced of order unity ISO impacts exceeding 100 km/s. By running hydrodynamical simulations for projectiles of different masses and impact velocities, up to 100 km/s, we show how late-stage equivalence dictates that transient crater dimensions are alone insufficient for inferring the projectile's velocity. On the other hand, the melt volume within craters of a fixed diameter may be a potential route for identifying ISO craters, as faster impacts produce more melt. This method requires that the melt volume scales with the energy of the projectile, while crater diameter scales with the point-source limit (sub-energy). Given that there are probably only a few ISO craters in the Solar System at best, and that transient crater dimensions are not a distinguishing feature for impact velocities at least up to 100 km/s, identification of an ISO crater proves a challenging task. Melt volume and high-pressure petrology may be diagnostic features once large volumes of material can be analyzed in situ.