论文标题

连续时间顺序推荐的长期短期偏好模型

Long Short-Term Preference Modeling for Continuous-Time Sequential Recommendation

论文作者

Chi, Huixuan, Xu, Hao, Fu, Hao, Liu, Mengya, Zhang, Mengdi, Yang, Yuji, Hao, Qinfen, Wu, Wei

论文摘要

在推荐系统中,对用户偏好的演变进行建模至关重要。最近,已经研究并实现了基于图形的动态方法以供建议,其中大多数集中在用户稳定的长期偏好上。但是,在实际情况下,用户的短期优先偏爱会随着时间的流逝而动态发展。尽管存在试图捕获它的顺序方法,但是如何使用基于动态图的方法对短期偏好的演变进行建模尚未得到很好的认可。特别是:1)现有方法不会像顺序方法一样明确编码和捕获短期偏好的演变; 2)简单地使用最后几个交互不足以建模不断变化的趋势。在本文中,我们提出了连续时间顺序推荐(LSTSR)的长期短期偏好模型(LSTSR),以捕获动态图下短期偏好的演变。具体而言,我们明确编码短期优先偏爱,并通过内存机制进行优化,该内存机制具有三个关键操作:消息,汇总和更新。我们的内存机制不仅可以存储单跳信息,而且还可以通过在线新的交互触发。在五个公共数据集上进行的广泛实验表明,LSTSR始终优于各种线路上许多最先进的推荐方法。

Modeling the evolution of user preference is essential in recommender systems. Recently, dynamic graph-based methods have been studied and achieved SOTA for recommendation, majority of which focus on user's stable long-term preference. However, in real-world scenario, user's short-term preference evolves over time dynamically. Although there exists sequential methods that attempt to capture it, how to model the evolution of short-term preference with dynamic graph-based methods has not been well-addressed yet. In particular: 1) existing methods do not explicitly encode and capture the evolution of short-term preference as sequential methods do; 2) simply using last few interactions is not enough for modeling the changing trend. In this paper, we propose Long Short-Term Preference Modeling for Continuous-Time Sequential Recommendation (LSTSR) to capture the evolution of short-term preference under dynamic graph. Specifically, we explicitly encode short-term preference and optimize it via memory mechanism, which has three key operations: Message, Aggregate and Update. Our memory mechanism can not only store one-hop information, but also trigger with new interactions online. Extensive experiments conducted on five public datasets show that LSTSR consistently outperforms many state-of-the-art recommendation methods across various lines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源