论文标题

具有跨方向一致性网络和高质量基准的多光谱车辆重新识别

Multi-spectral Vehicle Re-identification with Cross-directional Consistency Network and a High-quality Benchmark

论文作者

Zheng, Aihua, Zhu, Xianpeng, Ma, Zhiqi, Li, Chenglong, Tang, Jin, Ma, Jixin

论文摘要

为了应对复杂的照明环境中的车辆重新识别(RE-ID)的挑战,并考虑了多光谱来源,例如可见和红外信息,因为它们的出色互补优势。 但是,多光谱车辆的重新ID遭受了由不同模态的异质性质以及各种外观的巨大挑战引起的跨模式差异,每个身份中的视野不同。 同时,各种环境干扰会导致每种方式中的样本分布差异很大。 在这项工作中,我们提出了一个新型的跨方向一致性网络,以同时克服与模式和样本方面的差异。 特别是,我们设计了一个新的跨方向中心损失,以拉动每个身份的模态中心,接近减轻跨模式差异,而每个身份的样本中心接近减轻样品差异。这种策略可以为车辆重新ID生成歧视性的多光谱特征表示。 此外,我们设计一个自适应层归一化单元,以动态调整个体特征分布以处理稳健学习的模式内特征的分布差异。 为了提供一个全面的评估平​​台,我们创建了高质量的RGB-NIR TIR多光谱车辆重新ID基准(MSVR310),其中包括从广泛的观点,时间跨度和环境复杂性的310辆不同的车辆。 对创建和公共数据集进行的全面实验证明了与最先进方法相比,提出的方法的有效性。

To tackle the challenge of vehicle re-identification (Re-ID) in complex lighting environments and diverse scenes, multi-spectral sources like visible and infrared information are taken into consideration due to their excellent complementary advantages. However, multi-spectral vehicle Re-ID suffers cross-modality discrepancy caused by heterogeneous properties of different modalities as well as a big challenge of the diverse appearance with different views in each identity. Meanwhile, diverse environmental interference leads to heavy sample distributional discrepancy in each modality. In this work, we propose a novel cross-directional consistency network to simultaneously overcome the discrepancies from both modality and sample aspects. In particular, we design a new cross-directional center loss to pull the modality centers of each identity close to mitigate cross-modality discrepancy, while the sample centers of each identity close to alleviate the sample discrepancy. Such strategy can generate discriminative multi-spectral feature representations for vehicle Re-ID. In addition, we design an adaptive layer normalization unit to dynamically adjust individual feature distribution to handle distributional discrepancy of intra-modality features for robust learning. To provide a comprehensive evaluation platform, we create a high-quality RGB-NIR-TIR multi-spectral vehicle Re-ID benchmark (MSVR310), including 310 different vehicles from a broad range of viewpoints, time spans and environmental complexities. Comprehensive experiments on both created and public datasets demonstrate the effectiveness of the proposed approach comparing to the state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源