论文标题

视觉惯性大满贯,紧密耦合的液化剂GPS融合

Visual-Inertial SLAM with Tightly-Coupled Dropout-Tolerant GPS Fusion

论文作者

Boche, Simon, Zuo, Xingxing, Schaefer, Simon, Leutenegger, Stefan

论文摘要

机器人应用不断努力朝着更高的自主权努力。为了实现这一目标,高度健壮和准确的状态估计是必不可少的。事实证明,结合视觉和惯性传感器方式可以在短期应用中产生准确和局部一致的结果。不幸的是,视觉惯性状态估计器遭受长期轨迹漂移的积累。为了消除这种漂移,可以将全球测量值融合到状态估计管道中。全球测量的最著名和可用的来源是全球定位系统(GPS)。在本文中,我们提出了一种新颖的方法,该方法完全结合了立体视觉惯性同时定位和映射(SLAM),包括视觉循环封闭,并在基于紧密耦合且基于优化的框架中融合了全球传感器模态。结合了测量不确定性,我们提供了一个可靠的标准来解决全球参考框架初始化问题。此外,我们提出了一个类似环路的优化方案,以补偿接收GPS信号的中断期间累积的漂移。在数据集和现实世界实验中的实验验证表明,与现有的最新方法相比,与现有的最新方法相比,我们对GPS辍学方法的鲁棒性以及其能够估算高度准确和全球一致的轨迹的能力。

Robotic applications are continuously striving towards higher levels of autonomy. To achieve that goal, a highly robust and accurate state estimation is indispensable. Combining visual and inertial sensor modalities has proven to yield accurate and locally consistent results in short-term applications. Unfortunately, visual-inertial state estimators suffer from the accumulation of drift for long-term trajectories. To eliminate this drift, global measurements can be fused into the state estimation pipeline. The most known and widely available source of global measurements is the Global Positioning System (GPS). In this paper, we propose a novel approach that fully combines stereo Visual-Inertial Simultaneous Localisation and Mapping (SLAM), including visual loop closures, with the fusion of global sensor modalities in a tightly-coupled and optimisation-based framework. Incorporating measurement uncertainties, we provide a robust criterion to solve the global reference frame initialisation problem. Furthermore, we propose a loop-closure-like optimisation scheme to compensate drift accumulated during outages in receiving GPS signals. Experimental validation on datasets and in a real-world experiment demonstrates the robustness of our approach to GPS dropouts as well as its capability to estimate highly accurate and globally consistent trajectories compared to existing state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源