论文标题

部分可观测时空混沌系统的无模型预测

GANDSE: Generative Adversarial Network based Design Space Exploration for Neural Network Accelerator Design

论文作者

Feng, Lang, Liu, Wenjian, Guo, Chuliang, Tang, Ke, Zhuo, Cheng, Wang, Zhongfeng

论文摘要

随着深度学习的普及,深度学习的硬件实施平台引起了人们的兴趣。与通用设备(例如CPU或GPU)不同,在软件级别执行深度学习算法,神经网络硬件加速器直接执行该算法,以提高能源效率和性能提高。但是,随着深度学习算法的频繁发展,设计硬件加速器的工程工作和成本大大增加了。为了提高设计质量的同时,提出了神经网络加速器的设计自动化,在该设计空间探索算法被用于在设计空间内自动搜索优化的加速器设计。然而,神经网络加速器的复杂性增加为设计空间带来了不断增加的维度。结果,以前的设计空间探索算法不再足够有效,无法找到优化的设计。在这项工作中,我们提出了一个名为Gandse的神经网络加速器设计自动化框架,在这里我们重新考虑了设计空间探索的问题,并提出了一种基于生成对抗网络(GAN)的新方法,以支持对高维度大型设计空间的优化探索。实验表明,与包括多层感知器和深度强化学习在内的方法相比,甘地能够在可忽略的时间中找到更优化的设计。

With the popularity of deep learning, the hardware implementation platform of deep learning has received increasing interest. Unlike the general purpose devices, e.g., CPU, or GPU, where the deep learning algorithms are executed at the software level, neural network hardware accelerators directly execute the algorithms to achieve higher both energy efficiency and performance improvements. However, as the deep learning algorithms evolve frequently, the engineering effort and cost of designing the hardware accelerators are greatly increased. To improve the design quality while saving the cost, design automation for neural network accelerators was proposed, where design space exploration algorithms are used to automatically search the optimized accelerator design within a design space. Nevertheless, the increasing complexity of the neural network accelerators brings the increasing dimensions to the design space. As a result, the previous design space exploration algorithms are no longer effective enough to find an optimized design. In this work, we propose a neural network accelerator design automation framework named GANDSE, where we rethink the problem of design space exploration, and propose a novel approach based on the generative adversarial network (GAN) to support an optimized exploration for high dimension large design space. The experiments show that GANDSE is able to find the more optimized designs in negligible time compared with approaches including multilayer perceptron and deep reinforcement learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源