论文标题
部分可观测时空混沌系统的无模型预测
Asymptotic behavior of null geodesics near future null infinity. III. Photons towards inward directions
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
A new sufficient condition for photons emitted near future null infinity to reach future null infinity is derived by studying null geodesics in the Bondi coordinates in asymptotically flat spacetimes. In our previous works [arXiv:2106.03150, arXiv:2110.10917], such a condition was established for photons emitted in outward or tangential directions to constant radial surfaces. This paper improves our previous result by including photons emitted in inward directions. In four dimensions, imposing the same assumptions on the metric functions as previously, we prove that photons reach future null infinity if their initial values of $|dr/du|$ are smaller than a certain quantity, where $r$ and $u$ are the radial and retarded time coordinates, respectively. This quantity is determined by the asymptotic properties of the metric and is connected to the conjectured maximal luminosity. In higher dimensions, photons emitted with $dr/du>-(1-1/\sqrt{3})\approx -0.423$ are shown to reach future null infinity without the assumptions on the metric functions.