论文标题

建议列表与连续生成:与移动设备上的生成​​模型写作的交互设计影响文本长度,措辞和感知作者身份

Suggestion Lists vs. Continuous Generation: Interaction Design for Writing with Generative Models on Mobile Devices Affect Text Length, Wording and Perceived Authorship

论文作者

Lehmann, Florian, Markert, Niklas, Dang, Hai, Buschek, Daniel

论文摘要

神经语言模型有可能支持人类写作。但是,关于其整合和对写作和产出的影响仍然存在问题。为了解决这个问题,我们设计并比较了两个用于写作的用户界面与移动设备上的AI,这些用户界面操纵主动性和控制级别:1)使用连续生成的文本编写,AI添加了文本单词和用户转向。 2)编写建议,AI建议短语和用户从列表中选择。在一项监督的在线研究(n = 18)中,参与者使用了这些原型和没有AI的基线。我们收集了触摸互动,关于灵感和作者的评分以及访谈数据。有了AI的建议,人们的写作不那么积极,但觉得他们是作者。连续生成的文本减少了这种感知到的作者身份,但编辑行为增加了。在这两种设计中,AI都会增加文本长度,并被认为会影响措辞。我们的发现为UI设计决策对用户体验和共同创造系统的产出的影响增加了新的经验证据。

Neural language models have the potential to support human writing. However, questions remain on their integration and influence on writing and output. To address this, we designed and compared two user interfaces for writing with AI on mobile devices, which manipulate levels of initiative and control: 1) Writing with continuously generated text, the AI adds text word-by-word and user steers. 2) Writing with suggestions, the AI suggests phrases and user selects from a list. In a supervised online study (N=18), participants used these prototypes and a baseline without AI. We collected touch interactions, ratings on inspiration and authorship, and interview data. With AI suggestions, people wrote less actively, yet felt they were the author. Continuously generated text reduced this perceived authorship, yet increased editing behavior. In both designs, AI increased text length and was perceived to influence wording. Our findings add new empirical evidence on the impact of UI design decisions on user experience and output with co-creative systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源