论文标题
评估进化为学习算法
Evaluating evolution as a learning algorithm
论文作者
论文摘要
我们将自然选择和漂移的Moran模型解释为简化健身景观的学习特征,特别是基因型优越性的算法。该算法在提取这些特征方面的效率是通过将其与使用信息理论工具开发的新型贝叶斯学习算法进行比较来评估的。该算法利用环境和不断发展的人群之间的通信渠道类比。我们使用相关的渠道率来确定一项信息丰富的人口采样程序。我们发现,算法可以比Moran模型更快地识别基因型优势,但不确定性中的波动较大。
We interpret the Moran model of natural selection and drift as an algorithm for learning features of a simplified fitness landscape, specifically genotype superiority. This algorithm's efficiency in extracting these characteristics is evaluated by comparing it to a novel Bayesian learning algorithm developed using information-theoretic tools. This algorithm makes use of a communication channel analogy between an environment and an evolving population. We use the associated channel-rate to determine an informative population-sampling procedure. We find that the algorithm can identify genotype superiority faster than the Moran model but at the cost of larger fluctuations in uncertainty.