论文标题

使用时间变化的线性二次高斯控制,对电缆驱动的平行机器人的本地最佳估计和控制

Locally Optimal Estimation and Control of Cable Driven Parallel Robots using Time Varying Linear Quadratic Gaussian Control

论文作者

Chen, Gerry, Hutchinson, Seth, Dellaert, Frank

论文摘要

我们为电缆驱动的并行机器人(CDPR)控件提供了一个本地最佳的跟踪控制器,该控制器基于时变线性二次高斯(TV-LQG)控制器。与许多使用固定反馈收益的方法相反,我们的时变控制器根据工作区和未来轨迹的位置计算最佳收益。同时,我们严重依赖离线计算来减轻在线实施和可行性检查的负担。遵循概率图形模型的最佳控制模型日益普及,我们使用因子图作为工具来制定控制器的效率,直觉和模块化。因子图的拓扑结构编码方程的相关结构属性,以促进使用稀疏线性代数求解器的洞察力和有效计算的方式。我们首先使用因子图优化来计算标称轨迹,然后将图形线性化并应用变量消除以计算本地最佳的,时间变化的线性反馈收益。接下来,我们利用因子图公式来计算本地最佳的,随时间变化的卡尔曼滤波器的收益,并最终结合了本地最佳的线性控制和估计定律,以形成TV-LQG控制器。我们将TV-LQG控制器的跟踪精度与2.9m x 2.23m的4台式平面机器人上的最先进的双空间前馈控制器进行比较,并分别在旋转和翻译中分别展示了0.8°和11.6mm均等的均值均方根误差的跟踪精度。

We present a locally optimal tracking controller for Cable Driven Parallel Robot (CDPR) control based on a time-varying Linear Quadratic Gaussian (TV-LQG) controller. In contrast to many methods which use fixed feedback gains, our time-varying controller computes the optimal gains depending on the location in the workspace and the future trajectory. Meanwhile, we rely heavily on offline computation to reduce the burden of online implementation and feasibility checking. Following the growing popularity of probabilistic graphical models for optimal control, we use factor graphs as a tool to formulate our controller for their efficiency, intuitiveness, and modularity. The topology of a factor graph encodes the relevant structural properties of equations in a way that facilitates insight and efficient computation using sparse linear algebra solvers. We first use factor graph optimization to compute a nominal trajectory, then linearize the graph and apply variable elimination to compute the locally optimal, time varying linear feedback gains. Next, we leverage the factor graph formulation to compute the locally optimal, time-varying Kalman Filter gains, and finally combine the locally optimal linear control and estimation laws to form a TV-LQG controller. We compare the tracking accuracy of our TV-LQG controller to a state-of-the-art dual-space feed-forward controller on a 2.9m x 2.3m, 4-cable planar robot and demonstrate improved tracking accuracies of 0.8° and 11.6mm root mean square error in rotation and translation respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源