论文标题

定期定向路径和摩尔流动

Regular directed path and Moore flow

论文作者

Gaucher, Philippe

论文摘要

使用TAME常规$ d $ - 拓扑$ n $ cube的概念,我们将预制套件定期实现为多头$ d $ -space。它的执行路径对应于预留集的几何实现中的非常规常规$ d $ paths。相关的摩尔流量从预留集到摩尔流的函数引起,在H模型结构中弱等同于colimit parlimit的函数。当预留集是空间,特别是正确的时,两个函子重合。结果,给出了一个模型类别的解释,即预留套件的常规$ d $ - 同步的已知事实与CW-complex相当。最后,我们将预留集的定期实现为多个$ d $ - 空间,并对驯服的同义特性进行了一些观察。

Using the notion of tame regular $d$-path of the topological $n$-cube, we introduce the tame regular realization of a precubical set as a multipointed $d$-space. Its execution paths correspond to the nonconstant tame regular $d$-paths in the geometric realization of the precubical set. The associated Moore flow gives rise to a functor from precubical sets to Moore flows which is weakly equivalent in the h-model structure to a colimit-preserving functor. The two functors coincide when the precubical set is spatial, and in particular proper. As a consequence, it is given a model category interpretation of the known fact that the space of tame regular $d$-paths of a precubical set is homotopy equivalent to a CW-complex. We conclude by introducing the regular realization of a precubical set as a multipointed $d$-space and with some observations about the homotopical properties of tameness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源