论文标题

Omnicity:全能的城市理解多层次和多视图图像

OmniCity: Omnipotent City Understanding with Multi-level and Multi-view Images

论文作者

Li, Weijia, Lai, Yawen, Xu, Linning, Xiangli, Yuanbo, Yu, Jinhua, He, Conghui, Xia, Gui-Song, Lin, Dahua

论文摘要

本文介绍了Omnicity,这是一种从多层次和多视图图像中理解无所不能的城市的新数据集。更确切地说,Omnicity包含多视图的卫星图像以及街道级全景图和单视图图像,构成了超过100k像素的注释图像,这些图像是从纽约市的25k Geo-Locations中良好的一致性和收集的。为了减轻大量像素的注释努力,我们提出了一个有效的街道视觉图像注释管道,该管道利用卫星视图的现有标签图以及不同观点之间的转换关系(卫星,Panorama和Mono-View)。借助新的Omnicity数据集,我们为各种任务提供基准测试,包括构建足迹提取,高度估计以及构建平面/实例/细粒度分割。与现有的多层次和多视图基准相比,Omnicity包含更多具有更丰富的注释类型和更多视图的图像,提供了最先进模型的基准结果,并引入了街道级别Panorama图像的细粒度建筑实例细分的新任务。此外,Omnicity为现有任务提供了新的问题设置,例如跨视图匹配,综合,分割,检测等,并促进开发新方法,以了解大规模的城市理解,重建和仿真。 Omnicity数据集以及基准将在https://city-super.github.io/omnicity上找到。

This paper presents OmniCity, a new dataset for omnipotent city understanding from multi-level and multi-view images. More precisely, the OmniCity contains multi-view satellite images as well as street-level panorama and mono-view images, constituting over 100K pixel-wise annotated images that are well-aligned and collected from 25K geo-locations in New York City. To alleviate the substantial pixel-wise annotation efforts, we propose an efficient street-view image annotation pipeline that leverages the existing label maps of satellite view and the transformation relations between different views (satellite, panorama, and mono-view). With the new OmniCity dataset, we provide benchmarks for a variety of tasks including building footprint extraction, height estimation, and building plane/instance/fine-grained segmentation. Compared with the existing multi-level and multi-view benchmarks, OmniCity contains a larger number of images with richer annotation types and more views, provides more benchmark results of state-of-the-art models, and introduces a novel task for fine-grained building instance segmentation on street-level panorama images. Moreover, OmniCity provides new problem settings for existing tasks, such as cross-view image matching, synthesis, segmentation, detection, etc., and facilitates the developing of new methods for large-scale city understanding, reconstruction, and simulation. The OmniCity dataset as well as the benchmarks will be available at https://city-super.github.io/omnicity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源