论文标题
高$ t_c $ cuprates沿费米轮廓的热点,由$ s $ -d $ d $交换互动分析
Hot spots along the Fermi contour of high-$T_c$ cuprates analyzed by $s$-$d$ exchange interaction
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We perform a thorough theoretical study of the electron properties of a generic CuO$_2$ plane in the framework of Shubin-Kondo-Zener $s$-$d$ exchange interaction that simultaneously describes the correlation between $T_c$ and the Cu4$s$ energy. To this end, we apply the Pokrovsky theory [J. Exp. Theor. Phys. 13, 447-450 (1961)] for anisotropic gap BCS superconductors. It takes into account the thermodynamic fluctuations of the electric field in the dielectric direction perpendicular to the conducting layers. We microscopically derive a multiplicatively separable kernel able to describe the scattering rate in the momentum space, as well as the superconducting gap anisotropy within the BCS theory. These findings may be traced back to the fact that both the Fermi liquid and the BCS reductions lead to one and the same reduced Hamiltonian involving a separable interaction, such that a strong electron scattering corresponds to a strong superconducting gap and vice versa. Moreover, the superconducting gap and the scattering rate vanish simultaneously along the diagonals of the Brillouin zone. We would like to stress that our theoretical study reproduces the phenomenological analysis of other authors aiming at describing Angle Resolved Photoemission Spectroscopy measurements. Within standard approximations one and the same $s$-$d$ exchange Hamiltonian describes gap anisotropy of the superconducting phase and the anisotropy of scattering rate of charge carriers in the normal phase.