论文标题

伪有源子手机在Kahler 4-manifolds中

Pseudoconvex submanifolds in Kahler 4-manifolds

论文作者

Weber, Brian

论文摘要

在Kahler 4-manifolds上,不一定是紧凑或有限的拓扑类型,我们获得了基本的紧凑型嵌入式Levi-flat或Pseudoconvex Submanifold与环境歧管$ M^4 $的基本组之间的关系。当levi-flat submanifold $ v^3 $具有有限的基本组时,$π_1(m^4)= i_*π_1(v^3)$;当非分离pseudoconvex submanifold $ v^3 $具有有限的基本组时,则$π_1(m^4)= i_*π_1(v^3)\ rtimes \ rtimes \ mathbb {z} $。作为应用,如果Kahler歧管(是否紧凑)具有嵌入式的全体形态$ \ Mathbb {p}^1 $的积极自行解剖,则必须相交,它必须与所有其他全态$ p^1 $ p^1 $ p^1 $ p^1 $ p^1 $ p^1 $ p^1 $ p^$ m^4 $ $ m^4 $ a $^4 $ no nes and Alf Infeart和Alf Enef。如果Levi-flat Submanifold和一个嵌入式的Holomorphic $ \ Mathbb {p}^1 $的正相交都存在,则它们相交。 ALE Plus Alf末端的总数为零,或者不管存在哪些其他末端。我们提供示例,例如2端标量牌卡勒度量标准度量。

On Kahler 4-manifolds, not necessarily compact or of finite topological type, we obtain relationships between the fundamental group of compact embedded Levi-flat or pseudoconvex submanifold and the fundamental group of the ambient manifold $M^4$. When a Levi-flat submanifold $V^3$ has finite fundamental group then $π_1(M^4)=ι_*π_1(V^3)$; when a non-separating pseudoconvex submanifold $V^3$ has finite fundamental group, then $π_1(M^4)=ι_*π_1(V^3)\rtimes\mathbb{Z}$. As applications, if a Kahler manifold (compact or not) has an embedded holomorphic $\mathbb{P}^1$ of positive self-intersection, it must intersect all other holomorphic $P^1$ of non-negative self-intersection, the fundamental group of $M^4$ is trivial, and no ALE or ALF ends exist. If a Levi-flat submanifold and an embedded holomorphic $\mathbb{P}^1$ of positive self-intersection both exist, they intersect. The total number of ALE plus ALF ends is zero or one regardless of what other kinds of ends exist. We provide examples, such as a 2-ended scalar-flat Kahler metric conformal to the Taub-NUT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源