论文标题
自动发现新颖的视觉类别,以自我监督的原型学习
Automatically Discovering Novel Visual Categories with Self-supervised Prototype Learning
论文作者
论文摘要
本文解决了新型类别发现(NCD)的问题,该问题旨在区分大规模图像集中的未知类别。 NCD任务由于与实际场景的亲密关系而具有挑战性,在那里我们只遇到了一些部分类和图像。与NCD上的其他作品不同,我们利用原型强调类别歧视的重要性,并减轻新阶级缺失注释的问题。具体而言,我们提出了一种新型的自适应原型学习方法,该方法由两个主要阶段组成:原型表示学习和原型自我训练。在第一阶段,我们获得了一个可靠的特征提取器,该功能提取器可以用于所有基础和新型类别的图像。特征提取器的实例和类别歧视能力通过自我监督的学习和适应性原型来提高。在第二阶段,我们再次利用原型来整理离线伪标签,并训练类别聚类的最终参数分类器。我们对四个基准数据集进行了广泛的实验,并以最先进的性能证明了所提出方法的有效性和鲁棒性。
This paper tackles the problem of novel category discovery (NCD), which aims to discriminate unknown categories in large-scale image collections. The NCD task is challenging due to the closeness to the real-world scenarios, where we have only encountered some partial classes and images. Unlike other works on the NCD, we leverage the prototypes to emphasize the importance of category discrimination and alleviate the issue of missing annotations of novel classes. Concretely, we propose a novel adaptive prototype learning method consisting of two main stages: prototypical representation learning and prototypical self-training. In the first stage, we obtain a robust feature extractor, which could serve for all images with base and novel categories. This ability of instance and category discrimination of the feature extractor is boosted by self-supervised learning and adaptive prototypes. In the second stage, we utilize the prototypes again to rectify offline pseudo labels and train a final parametric classifier for category clustering. We conduct extensive experiments on four benchmark datasets and demonstrate the effectiveness and robustness of the proposed method with state-of-the-art performance.