论文标题
涵盖曲线的对称产品和格拉斯曼尼亚人的Cayley-Bacharach条件
Covering gonality of symmetric products of curves and Cayley-Bacharach condition on Grassmannians
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Given an irreducible projective variety $X$, the covering gonality of $X$ is the least gonality of an irreducible curve $E\subset X$ passing through a general point of $X$. In this paper we study the covering gonality of the $k$-fold symmetric product $C^{(k)}$ of a smooth complex projective curve $C$ of genus $g\geq k+1$. It follows from a previous work of the first author that the covering gonality of the second symmetric product of $C$ equals the gonality of $C$. Using a similar approach, we prove the same for the $3$-fold and the $4$-fold symmetric product of $C$. A crucial point in the proof is the study of Cayley-Bacharach condition on Grassmannians. In particular, we describe the geometry of linear subspaces of $\mathbb{P}^n$ satisfying this condition and we prove a result bounding the dimension of their linear span.