论文标题
二维设备约瑟夫森交界处
Two-site anyonic Josephson junction
论文作者
论文摘要
Anyons是具有中间量子统计的粒子,其波函数通过粒子交换获得了相位$ e^{iθ} $。灵感来自于使用被困在光学晶格中的超冷原子进行模拟的提案的启发,我们研究了两个位置的约瑟夫森交界处,即被限制在一维双孔电势中的人。我们在分析和数字上表明,任何人约瑟夫森连接的许多特性,例如约瑟夫森频率,不平衡的解决方案,宏观量子自我捕获,相干性可见性和冷凝物分数,都取决于任何人的角度$θ$。我们的理论预测是对双孔电势中任何人物物质的不久的实验量子模拟的坚实基准。
Anyons are particles with intermediate quantum statistics whose wavefunction acquires a phase $e^{iθ}$ by particle exchange. Inspired by proposals of simulating anyons using ultracold atoms trapped in optical lattices, we study a two-site anyonic Josephson junction, i.e. anyons confined in a one-dimensional double-well potential. We show, analytically and numerically, that many properties of anyonic Josephson junctions, such as Josephson frequency, imbalanced solutions, macroscopic quantum self-trapping, coherence visibility, and condensate fraction, crucially depend on the anyonic angle $θ$. Our theoretical predictions are a solid benchmark for near future experimental quantum simulations of anyonic matter in double-well potentials.