论文标题
部分可观测时空混沌系统的无模型预测
Lattice three-gluon vertex in extended kinematics: planar degeneracy
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We present novel results for the three-gluon vertex, obtained from an extensive quenched lattice simulation in the Landau gauge. The simulation evaluates the transversely projected vertex, spanned on a special tensorial basis, whose form factors are naturally parametrized in terms of individually Bose-symmetric variables. Quite interestingly, when evaluated in these kinematics, the corresponding form factors depend almost exclusively on a single kinematic variable, formed by the sum of the squares of the three incoming four-momenta, $q$, $r$, and $p$. Thus, all configurations lying on a given plane in the coordinate system $(q^2, r^2, p^2)$ share, to a high degree of accuracy, the same form factors, a property that we denominate \emph{planar degeneracy}. We have confirmed the validity of this property through an exhaustive study of the set of configurations satisfying the condition $q^2 = r^2$, within the range $[0, 5\, \rm GeV]$. Moreover, a preliminary exploration reveals that the planar degeneracy persist in the case of more arbitrary configurations. This drastic simplification allows for a remarkably compact description of the main bulk of the data, which is particularly suitable for future numerical applications. A semi-perturbative analysis reproduces the lattice findings rather accurately, once the inclusion of a gluon mass has cured all spurious divergences.