论文标题

部分可观测时空混沌系统的无模型预测

A knee cannot have lung disease: out-of-distribution detection with in-distribution voting using the medical example of chest X-ray classification

论文作者

Wollek, Alessandro, Willem, Theresa, Ingrisch, Michael, Sabel, Bastian, Lasser, Tobias

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

To investigate the impact of OOD radiographs on existing chest X-ray classification models and to increase their robustness against OOD data. The study employed the commonly used chest X-ray classification model, CheXnet, trained on the chest X-ray 14 data set, and tested its robustness against OOD data using three public radiography data sets: IRMA, Bone Age, and MURA, and the ImageNet data set. To detect OOD data for multi-label classification, we proposed in-distribution voting (IDV). The OOD detection performance is measured across data sets using the area under the receiver operating characteristic curve (AUC) analysis and compared with Mahalanobis-based OOD detection, MaxLogit, MaxEnergy and self-supervised OOD detection (SS OOD). Without additional OOD detection, the chest X-ray classifier failed to discard any OOD images, with an AUC of 0.5. The proposed IDV approach trained on ID (chest X-ray 14) and OOD data (IRMA and ImageNet) achieved, on average, 0.999 OOD AUC across the three data sets, surpassing all other OOD detection methods. Mahalanobis-based OOD detection achieved an average OOD detection AUC of 0.982. IDV trained solely with a few thousand ImageNet images had an AUC 0.913, which was higher than MaxLogit (0.726), MaxEnergy (0.724), and SS OOD (0.476). The performance of all tested OOD detection methods did not translate well to radiography data sets, except Mahalanobis-based OOD detection and the proposed IDV method. Training solely on ID data led to incorrect classification of OOD images as ID, resulting in increased false positive rates. IDV substantially improved the model's ID classification performance, even when trained with data that will not occur in the intended use case or test set, without additional inference overhead.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源