论文标题

稀有的kaon腐烂

Rare Kaon Decays

论文作者

Lin, Chieh

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The experimental status of the $K \to πν\barν$ search is presented. The $K \to πν\barν$ decay is sensitive to New Physics because it is theoretically pristine and highly suppressed. The $K_L^0 \to π^0 ν\barν$ search is performed by the KOTO experiment and a branching fraction limit of $\mathcal{B}(K_L^0 \to π^0 ν\barν)$ $<$ 3.0 $\times$ 10$^{-9}$ (90% confidence level) was set. This limit is $\mathcal{O}(100)$ times larger than the Standard Model prediction. The $K^+ \to π^+ ν\barν$ search is performed by the NA62 experiment and $\mathcal{B}(K^+ \to π^+ ν\barν)$ $=$ (10.6 $^{+4.0}_{-3.5}$ $|_{\text{stat.}}$) $\pm$ 0.9$_{\text{syst.}}$) $\times$ 10$^{-11}$ (68% confidence level) was set. This shows an agreement with the Standard Model. Both measurements can also be used to search for the dark particle $X$ via the $K \to πX$ decay. A projection of the $K \to πν\barν$ search in the future is also given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源