论文标题

可解决的周期性安德森模型,具有无限范围的hatsugai-kohmoto互动:地面及以后

Solvable Periodic Anderson Model with Infinite-Range Hatsugai-Kohmoto Interaction: Ground-states and beyond

论文作者

Zhong, Yin

论文摘要

在本文中,我们引入了一个可解决的两轨/带模型,该模型具有无限范围的hatsugai-kohmoto相互作用,该模型是修改的周期性安德森模型。它的溶解度来自动量空间中严格的位置,并且有效,适用于任意晶格的几何形状和电子填充。关于一维链($ 1D $)链的案例研究表明,地面状态具有Luttinger定理侵入的非Fermi-liquid类金属状态,杂交驱动的绝缘子和相互作用驱动的无型Mott Mott Instrulator。金属和绝缘状态之间所涉及的量子相变属于Lifshitz过渡的普遍性,即费米表面或带状结构的拓扑变化。对$ 2D $ Square Lattice的进一步调查表明,其与$ 1D $案例的相似性,因此后者的发现可能是所有空间维度的通用性。我们希望当前的模型或其修改可能有助于理解$ f $ - 电子化合物中的新型量子状态,尤其是拓扑昆多绝缘子SMB $ _ {6} $和ybb $ _ {12} $。

In this paper we introduce a solvable two-orbital/band model with infinite-range Hatsugai-Kohmoto interaction, which serves as a modified periodic Anderson model. Its solvability results from strict locality in momentum space, and is valid for arbitrary lattice geometry and electron filling. Case study on a one-dimension ($1D$) chain shows that the ground-states have Luttinger theorem-violating non-Fermi-liquid-like metallic state, hybridization-driven insulator and interaction-driven featureless Mott insulator. The involved quantum phase transition between metallic and insulating states belongs to the universality of Lifshitz transition, i.e. change of topology of Fermi surface or band structure. Further investigation on $2D$ square lattice indicates its similarity with the $1D$ case, thus the findings in the latter may be generic for all spatial dimensions. We hope the present model or its modification may be useful for understanding novel quantum states in $f$-electron compounds, particularly the topological Kondo insulator SmB$_{6}$ and YbB$_{12}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源