论文标题

关键费米表面的精确低能解决方案

Exact Low-Energy Solution for Critical Fermi Surfaces

论文作者

Ravid, Tomer, Banks, Tom

论文摘要

我们以低能,低动量状态在电子气体中直接从电子气体中得出多维实施,其中$ω\ gg \ frac {k^2} {k_f} $,使得分散体可以线性化。为了达到此限制,Fermi动量和斑块的数量同时保持每个贴片有限的宽度。我们将其应用于获得精确的低能解,该解决方案是Fermi表面的问题,该问题与无疾病和电子电子散射的无间隙玻色子结合。与文献中的主张相反,我们表明琼脂化理论恰好再现了以前以大型$ n $理论获得的电子的$ω^{2/3} $。我们认为,校正因切线分散而在足够低的能量下具有亚分性,因此$ v_f k \ gg \ gg \ left(\ frac {g^4 v_f} {k_f} {k_f} \ right)^{1/3} {1/3}ω^{2/3} $ g $,$ g $ c $ c up s coupl is c uns。

We derive multidimensional bosonization directly from the electron gas in a low-energy, low momentum regime where $ω\gg \frac{k^2}{k_F}$, such that the dispersion can be linearized. To reach this limit, the Fermi momentum and the number of patches are scaled simultaneously keeping the width of each patch finite. We apply this to obtain an exact low-energy solution of the problem of a Fermi surface coupled to a gapless boson, free of disorder and electron-electron scattering. Contrary to claims in the literature, we show that the bosonized theory exactly reproduces the $ω^{2/3}$ of electrons, previously obtained in large-$N$ theories. We argue that correction to the self-energy due to tangential dispersion are subdominant at sufficiently low energies such that $v_F k\gg \left(\frac{g^4 v_F}{k_F}\right)^{1/3} ω^{2/3}$, where $g$ is the coupling constant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源