论文标题

多进球多代理拾取和交付

Multi-Goal Multi-Agent Pickup and Delivery

论文作者

Xu, Qinghong, Li, Jiaoyang, Koenig, Sven, Ma, Hang

论文摘要

在这项工作中,我们考虑了多代理拾取和交付(MAPD)问题,在该问题中,代理商不断参与新任务,并需要计划无碰撞路径以执行它们。要执行任务,代理需要访问由接送位置和交货位置组成的两个目标位置。我们提出了两种算法的变体,该变体使用Anytime Algorithm大型邻里搜索(LNS)为每个代理分配一系列任务,并使用多代理路径查找(MAPF)基于基于优先级的搜索(PBS)计划路径。 LNS-PBS已完整地用于良好的MAPD实例,MAPD实例的现实子类,并且比现有完整的MAPD算法中央更有效。 LNS-WPBS没有提供完整的保证,但在经验上比LNS-PBS更有效和稳定。它扩展到大型仓库中数千个代理商和数千个任务,并且在经验上比现有的可伸缩MAPD算法HBH+MLA*更有效。 LNS-PBS和LNS-WPB也适用于MAPD的更一般变体,即多目标MAPD(MG-MAPD)问题,其中任务可以具有不同数量的目标位置。

In this work, we consider the Multi-Agent Pickup-and-Delivery (MAPD) problem, where agents constantly engage with new tasks and need to plan collision-free paths to execute them. To execute a task, an agent needs to visit a pair of goal locations, consisting of a pickup location and a delivery location. We propose two variants of an algorithm that assigns a sequence of tasks to each agent using the anytime algorithm Large Neighborhood Search (LNS) and plans paths using the Multi-Agent Path Finding (MAPF) algorithm Priority-Based Search (PBS). LNS-PBS is complete for well-formed MAPD instances, a realistic subclass of MAPD instances, and empirically more effective than the existing complete MAPD algorithm CENTRAL. LNS-wPBS provides no completeness guarantee but is empirically more efficient and stable than LNS-PBS. It scales to thousands of agents and thousands of tasks in a large warehouse and is empirically more effective than the existing scalable MAPD algorithm HBH+MLA*. LNS-PBS and LNS-wPBS also apply to a more general variant of MAPD, namely the Multi-Goal MAPD (MG-MAPD) problem, where tasks can have different numbers of goal locations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源