论文标题

几何互动增强图协作过滤

Geometric Interaction Augmented Graph Collaborative Filtering

论文作者

Zhang, Yiding, Li, Chaozhuo, Wang, Senzhang, Lian, Jianxun, Xie, Xing

论文摘要

基于图的协作过滤能够从高阶交互中捕获基本和丰富的协作信号,因此获得了越来越多的研究兴趣。通常,用户和项目的嵌入在欧几里得空间中定义,以及交互图上的传播。同时,最近的作品指出,高阶相互作用自然形成了绿树成眉的结构,双曲线模型蓬勃发展。但是,相互作用图固有地表现出混合和嵌套的几何特征,而现有的基于单几何的模型不足以完全捕获这种复杂的拓扑模式。在本文中,我们建议在混合几何空间中对用户项目的交互进行建模,在该空间中,欧几里得和双曲线空间的优点同时享受学习表达性表示。公共数据集的实验结果验证了我们提案的有效性。

Graph-based collaborative filtering is capable of capturing the essential and abundant collaborative signals from the high-order interactions, and thus received increasingly research interests. Conventionally, the embeddings of users and items are defined in the Euclidean spaces, along with the propagation on the interaction graphs. Meanwhile, recent works point out that the high-order interactions naturally form up the tree-likeness structures, which the hyperbolic models thrive on. However, the interaction graphs inherently exhibit the hybrid and nested geometric characteristics, while the existing single geometry-based models are inadequate to fully capture such sophisticated topological patterns. In this paper, we propose to model the user-item interactions in a hybrid geometric space, in which the merits of Euclidean and hyperbolic spaces are simultaneously enjoyed to learn expressive representations. Experimental results on public datasets validate the effectiveness of our proposal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源