论文标题
DAPDAG:通过扰动DAG重建的域改编
DAPDAG: Domain Adaptation via Perturbed DAG Reconstruction
论文作者
论文摘要
利用来自多个域的标记数据来启用没有标签的另一个域中的预测是一个重大而充满挑战的问题。要解决此问题,我们介绍了Dapdag框架(\ textbf {d} omain \ textbf {a}通过\ textbf {p} daptation daptation daptation daptation \ textbf {p} erturbed \ textbf {dag {dag}重建)提议学习对自动统计学的启动,以绘制启动的特征,以绘制diorcy a diorcy a diorcy a diorcy a diorcy a a diorcy a diorcy a a自动化( 任务。在观察到的变量中,允许有条件的分布在由潜在环境变量$ e $领导的域变化的变量中,假定其基础DAG结构是不变的。编码器旨在用作$ e $的推理设备,而解码器重建每个观察到的变量在其DAG中的图形父母和推断的$ e $中。我们以端到端的方式共同训练编码器和解码器,并对具有混合变量的合成和真实数据集进行实验。经验结果表明,重建DAG有益于大约推断。此外,我们的方法可以在预测任务中与其他基准测试实现竞争性能,具有更好的适应能力,尤其是在目标域与源域显着不同。
Leveraging labelled data from multiple domains to enable prediction in another domain without labels is a significant, yet challenging problem. To address this problem, we introduce the framework DAPDAG (\textbf{D}omain \textbf{A}daptation via \textbf{P}erturbed \textbf{DAG} Reconstruction) and propose to learn an auto-encoder that undertakes inference on population statistics given features and reconstructing a directed acyclic graph (DAG) as an auxiliary task. The underlying DAG structure is assumed invariant among observed variables whose conditional distributions are allowed to vary across domains led by a latent environmental variable $E$. The encoder is designed to serve as an inference device on $E$ while the decoder reconstructs each observed variable conditioned on its graphical parents in the DAG and the inferred $E$. We train the encoder and decoder jointly in an end-to-end manner and conduct experiments on synthetic and real datasets with mixed variables. Empirical results demonstrate that reconstructing the DAG benefits the approximate inference. Furthermore, our approach can achieve competitive performance against other benchmarks in prediction tasks, with better adaptation ability, especially in the target domain significantly different from the source domains.