论文标题
步态:学习步态识别的学习歧视性全球本地特征表示
GaitGL: Learning Discriminative Global-Local Feature Representations for Gait Recognition
论文作者
论文摘要
现有的步态识别方法要么直接从原始步态序列建立全局特征表示(GFR),要么从几个本地部分生成本地特征表示(LFR)。但是,随着较深的网络层中的接收场变得更大,GFR倾向于忽略人类姿势的当地细节。尽管LFR允许网络专注于每个局部区域的详细姿势信息,但它忽略了不同地方部分之间的关系,因此仅利用了几个特定区域的有限本地信息。为了解决这些问题,我们提出了一个名为GaitGL的基于全球的步态识别网络,以生成更具歧视性的特征表示。具体来说,开发了一个新颖的全球和局部卷积层(GLCL),以充分利用每一层中的全局视觉信息和局部区域细节。 GLCL是一种双支分支结构,由GFR提取器和基于掩码的LFR提取器组成。 GFR提取器旨在提取上下文信息,例如各个身体部位之间的关系,并提出了基于面具的LFR提取器,以利用当地区域的详细姿势变化。此外,我们引入了一种基于面具的新型策略,以提高局部特征提取能力。具体而言,我们设计了一对互补口罩以随机遮住特征图,然后在各种遮挡的特征图上训练我们的基于面具的LFR提取器。通过这种方式,LFR提取器将学会完全利用本地信息。广泛的实验表明,步态比最先进的步态识别方法更好。 CASIA-B,OU-MVLP,GREW和GAIT3D的平均排名准确性分别为93.6%,98.7%,68.0%和63.8%,明显优于竞争方法。拟议的方法在两场比赛中赢得了一等奖:HID 2020和HID 2021。
Existing gait recognition methods either directly establish Global Feature Representation (GFR) from original gait sequences or generate Local Feature Representation (LFR) from several local parts. However, GFR tends to neglect local details of human postures as the receptive fields become larger in the deeper network layers. Although LFR allows the network to focus on the detailed posture information of each local region, it neglects the relations among different local parts and thus only exploits limited local information of several specific regions. To solve these issues, we propose a global-local based gait recognition network, named GaitGL, to generate more discriminative feature representations. To be specific, a novel Global and Local Convolutional Layer (GLCL) is developed to take full advantage of both global visual information and local region details in each layer. GLCL is a dual-branch structure that consists of a GFR extractor and a mask-based LFR extractor. GFR extractor aims to extract contextual information, e.g., the relationship among various body parts, and the mask-based LFR extractor is presented to exploit the detailed posture changes of local regions. In addition, we introduce a novel mask-based strategy to improve the local feature extraction capability. Specifically, we design pairs of complementary masks to randomly occlude feature maps, and then train our mask-based LFR extractor on various occluded feature maps. In this manner, the LFR extractor will learn to fully exploit local information. Extensive experiments demonstrate that GaitGL achieves better performance than state-of-the-art gait recognition methods. The average rank-1 accuracy on CASIA-B, OU-MVLP, GREW and Gait3D is 93.6%, 98.7%, 68.0% and 63.8%, respectively, significantly outperforming the competing methods. The proposed method has won the first prize in two competitions: HID 2020 and HID 2021.