论文标题

离散平均场随机系统的非乱局有限时间稳定

Non-fragile Finite-time Stabilization for Discrete Mean-field Stochastic Systems

论文作者

Zhang, Tianliang, Deng, Feiqi, Shi, Peng

论文摘要

在本文中,研究了线性离散平均场随机系统的非差异有限时间稳定问题。假定控制参数的不确定特征是随机满足Bernoulli分布的。引入了一种称为``状态过渡矩阵方法''的新方法,并得出了一些必要和足够的条件来解决基础稳定问题。基于状态过渡矩阵的Lyapunov Theorem也为离散的有限时间控制理论做出了贡献。为一个实用的示例提供了一个实践示例,以验证新提出的控制策略的有效性。

In this paper, the problem of non-fragile finite-time stabilization for linear discrete mean-field stochastic systems is studied. The uncertain characteristics in control parameters are assumed to be random satisfying the Bernoulli distribution. A new approach called the ``state transition matrix method" is introduced and some necessary and sufficient conditions are derived to solve the underlying stabilization problem. The Lyapunov theorem based on the state transition matrix also makes a contribution to the discrete finite-time control theory. One practical example is provided to validate the effectiveness of the newly proposed control strategy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源