论文标题

使用自上而下的信用分配网络对深度神经网络的生物学上有合理的培训

Biologically Plausible Training of Deep Neural Networks Using a Top-down Credit Assignment Network

论文作者

Chen, Jian-Hui, Liu, Cheng-Lin, Wang, Zuoren

论文摘要

尽管基于反向传播算法的深神经网络广泛采用,但BP算法的生物学不可见性可能会限制新的DNN模型的发展。为了找到一种具有生物学上合理的算法来替代BP,我们专注于生物大脑固有的自上而下的机制。尽管生物脑中自上而下的连接在高级认知功能中起着至关重要的作用,但它们在神经网络学习中的应用仍不清楚。这项研究提出了一个两级培训框架,旨在使用自上而下的信用分配网络(TDCA-NETWORK)培训自下而上的网络。 TDCA网络可作为常规损耗函数和后传播算法的替代品,该算法广泛用于神经网络培训。我们进一步引入了一种受脑启发的信用扩散机制,大大降低了TDCA-NETWORK的参数复杂性,从而大大加速了培训,而不会损害网络的性能。您的实验涉及非convex功能优化,有监督的学习和强化学习表明,A a fefltrated TDCA-Network-Network-network Experformentsperfers跨越了各种背景。损失景观中更新轨迹的可视化表明TDCA网络绕过局部最小值的能力通常会被捕获。 TDCA网络在多任务优化方面也表现出色,证明了在监督学习中的不同数据集以及强化学习中的任务设置的强大概括性。此外,结果表明,TDCA网络具有跨不同体系结构培训神经网络的有希望的潜力。

Despite the widespread adoption of Backpropagation algorithm-based Deep Neural Networks, the biological infeasibility of the BP algorithm could potentially limit the evolution of new DNN models. To find a biologically plausible algorithm to replace BP, we focus on the top-down mechanism inherent in the biological brain. Although top-down connections in the biological brain play crucial roles in high-level cognitive functions, their application to neural network learning remains unclear. This study proposes a two-level training framework designed to train a bottom-up network using a Top-Down Credit Assignment Network (TDCA-network). The TDCA-network serves as a substitute for the conventional loss function and the back-propagation algorithm, widely used in neural network training. We further introduce a brain-inspired credit diffusion mechanism, significantly reducing the TDCA-network's parameter complexity, thereby greatly accelerating training without compromising the network's performance.Our experiments involving non-convex function optimization, supervised learning, and reinforcement learning reveal that a well-trained TDCA-network outperforms back-propagation across various settings. The visualization of the update trajectories in the loss landscape indicates the TDCA-network's ability to bypass local minima where BP-based trajectories typically become trapped. The TDCA-network also excels in multi-task optimization, demonstrating robust generalizability across different datasets in supervised learning and unseen task settings in reinforcement learning. Moreover, the results indicate that the TDCA-network holds promising potential to train neural networks across diverse architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源