论文标题
带电的单文件系统中的通用异常波动
Universal anomalous fluctuations in charged single-file systems
论文作者
论文摘要
我们引入了具有内部自由度(称为电荷)相互作用的硬核颗粒的一维单文件系统(意味着禁止粒子交叉),我们表现出一种新型的动态普遍性类型,反映在宽度统计特性的巨镜统计特性的巨镜波动可观察到的电荷转移等宽度统计特性。我们发现,严格的动力约束导致累积电荷电流的通用异常统计,这既体现在典型波动的时间尺度特征,也表现在描述罕见事件的速率函数上。通过计算两个扩展子系统之间的净传输电荷的完整计数统计数据,我们以分析方式建立了许多非正统的动力学属性。最突出的是,平衡中的典型波动受通用分布的控制,该分布显着偏离了预期的高斯统计数据,而大型波动是通过具有特殊三重临界点的异国情调的大差异率函数来描述的。动态阶段之间的竞争远非均衡,导致单变量电荷大传播函数的第一阶和二阶和自发断裂的动力学相变。概述的动态普遍性的丰富现象学在充满电的硬核颗粒的精确解决的经典细胞自动机上得到了例证。我们确定了Lee-Yang的相变理论框架中的动态相图,并显示了不同动力学状态的超维图。我们的发现使我们得出结论,基于代数动力学指数和渐近缩放函数的动态普遍性类别的常规分类,这些函数表征了动态结构因子的流体动力学放松,这是不完整的,呼吁进行细化。
Introducing a general class of one-dimensional single-file systems (meaning that particle crossings are prohibited) of interacting hardcore particles with internal degrees of freedom (called charge), we exhibit a novel type of dynamical universality reflected in anomalous statistical properties of macroscopic fluctuating observables such as charge transfer. We find that stringent dynamical constraints lead to universal anomalous statistics of cumulative charge currents manifested both on the timescale characteristic of typical fluctuations and also in the rate function describing rare events. By computing the full counting statistics of net transferred charge between two extended subsystems, we establish a number of unorthodox dynamical properties in an analytic fashion. Most prominently, typical fluctuations in equilibrium are governed by a universal distribution that markedly deviates from the expected Gaussian statistics, whereas large fluctuations are described by an exotic large-deviation rate function featuring an exceptional triple critical point. Far from equilibrium, competition between dynamical phases leads to dynamical phase transitions of first and second order and spontaneous breaking of fluctuation symmetry of the univariate charge large-deviation function. The rich phenomenology of the outlined dynamical universality is exemplified on an exactly solvable classical cellular automaton of charged hardcore particles. We determine the dynamical phase diagram in the framework of Lee-Yang's theory of phase transitions and exhibit a hyper-dimensional diagram of distinct dynamical regimes. Our findings lead us to conclude that the conventional classification of dynamical universality classes based on the algebraic dynamical exponents and asymptotic scaling functions that characterize hydrodynamic relaxation of the dynamical structure factor is incomplete and calls for refinement.