论文标题
超宽带巨大的MIMO
Super-Wideband Massive MIMO
论文作者
论文摘要
我们为连接的天线阵列提供了一个统一的模型,该模型在紧凑的空间中具有大量紧密整合(即,耦合)天线,在大量多输入多输入(MIMO)通信的背景下。我们将该系统称为紧密耦合的大型MIMO。从信息理论的角度来看,根据天线的数量,操作带宽和表格因素在先前的艺术中没有解决,从而扩展了紧密耦合的大型MIMO系统的设计。我们使用基于多端口电路理论的远场(FF)MIMO通信的物理一致的建模方法研究了这个开放的研究问题。为此,我们将相互耦合(MC)从敌人转变为MIMO Systems Design的朋友,从而挑战了促进MC缓解/补偿的天线系统工程的基本知觉。我们表明,紧密的MC扩大了天线阵列的操作带宽,从而释放了我们犯有“带宽增益”的缺失的MIMO增益。此外,我们通过在分析上通过在具有准连续孔的大型天线阵列的极限的情况下建立一个条件,从而在分析上得出了渐近最佳的间距与安特纳大小的比率。我们还优化了天线阵列大小,同时最大化固定发射功率和元素间间距下可实现的速率。然后,我们研究了MC对视线直射(LOS)和瑞利褪色渠道的MIMO系统可达到的影响的影响。这些结果揭示了对紧密耦合的巨大天线阵列的设计的新见解,而不是通过对半波长间距的信念来忽略MC的广泛“断开连接”设计。
We present a unified model for connected antenna arrays with a large number of tightly integrated (i.e., coupled) antennas in a compact space within the context of massive multiple-input multiple-output (MIMO) communication. We refer to this system as tightly-coupled massive MIMO. From an information-theoretic perspective, scaling the design of tightly-coupled massive MIMO systems in terms of the number of antennas, the operational bandwidth, and form factor was not addressed in prior art. We investigate this open research problem using a physically consistent modeling approach for far-field (FF) MIMO communication based on multi-port circuit theory. In doing so, we turn mutual coupling (MC) from a foe to a friend of MIMO systems design, thereby challenging a basic percept in antenna systems engineering that promotes MC mitigation/compensation. We show that tight MC widens the operational bandwidth of antenna arrays thereby unleashing a missing MIMO gain that we coin "bandwidth gain". Furthermore, we derive analytically the asymptotically optimum spacing-to-antenna-size ratio by establishing a condition for tight coupling in the limit of large-size antenna arrays with quasi-continuous apertures. We also optimize the antenna array size while maximizing the achievable rate under fixed transmit power and inter-element spacing. Then, we study the impact of MC on the achievable rate of MIMO systems under line-of-sight (LoS) and Rayleigh fading channels. These results reveal new insights into the design of tightly-coupled massive antenna arrays as opposed to the widely-adopted "disconnected" designs that disregard MC by putting faith in the half-wavelength spacing rule.