论文标题
从数据中学习动态定律的量子启发方法 - 块 - 符号和规格介导的重量共享
A quantum inspired approach to learning dynamical laws from data -- block-sparsity and gauge-mediated weight sharing
论文作者
论文摘要
近年来,在有意义的假设下以很大程度上以数据为导向的方式恢复复杂系统的动力学定律产生了越来越多的兴趣。在这项工作中,我们利用有效的动力学定律的有效块张量张量训练训练训练,为此任务提出了一种可扩展且数值稳健的方法,灵感来自量子多体系统中的类似方法。先前已针对一维系统的动态定律得出了低级张量火车的表示。我们将此结果扩展到具有$ k $ mmode交互的系统的有效表示,以及具有衰减相互作用的系统的受控近似值。我们进一步认为,可以对动力学定律(例如有限多项式程度)的自然结构假设以张量训练核心的块状支撑模式的形式利用。某些模式相互作用之间的其他结构相似性可以通过安萨兹内的重量共享来解释。为了利用这些结构假设,我们提出了一种新颖的优化算法,块 - 比索限制了与尺度介导的重量共享的最小二乘。该算法受到机器学习中类似概念的启发,并在以前的方法上取得了显着改善。我们在三个一维系统上进行了数值的性能-Fermi-Pasta-ulam-tsingou系统,旋转磁极旋转偶极子和通过修改的Lennard-Jones电位相互作用的点颗粒,观察到高度准确且噪声的恢复。
Recent years have witnessed an increased interest in recovering dynamical laws of complex systems in a largely data-driven fashion under meaningful hypotheses. In this work, we propose a scalable and numerically robust method for this task, utilizing efficient block-sparse tensor train representations of dynamical laws, inspired by similar approaches in quantum many-body systems. Low-rank tensor train representations have been previously derived for dynamical laws of one-dimensional systems. We extend this result to efficient representations of systems with $K$-mode interactions and controlled approximations of systems with decaying interactions. We further argue that natural structure assumptions on dynamical laws, such as bounded polynomial degrees, can be exploited in the form of block-sparse support patterns of tensor-train cores. Additional structural similarities between interactions of certain modes can be accounted for by weight sharing within the ansatz. To make use of these structure assumptions, we propose a novel optimization algorithm, block-sparsity restricted alternating least squares with gauge-mediated weight sharing. The algorithm is inspired by similar notions in machine learning and achieves a significant improvement in performance over previous approaches. We demonstrate the performance of the method numerically on three one-dimensional systems -- the Fermi-Pasta-Ulam-Tsingou system, rotating magnetic dipoles and point particles interacting via modified Lennard-Jones potentials, observing a highly accurate and noise-robust recovery.