论文标题
立方体,Cassegrain U波段有效光谱仪
CUBES, the Cassegrain U-Band Efficient Spectrograph
论文作者
论文摘要
在极大的望远镜时代,在可预见的未来,当前一代的8-10m设施可能在地面波长中保持竞争力。 Cassegrain U波段有效光谱仪(立方体)的设计旨在在近紫外线(305-400 nm需求,300-420 nm目标)中提供高效率(> 40%)的观测值,以r> 20,000的光谱解析能力(具有较低分辨率的,较低分辨率的,较低的天空含量,r〜7,000 r〜7,000)。设计着重于最大化仪器吞吐量(确保在313 nm处的高分辨率元素的信号与噪声比(SNR)〜20 〜20 nm的u〜18.5 mag对象,在1小时的观测值中),它将在许多天体物理学领域提供新的可能性,从而在许多领域中提供特殊的元素和巨大的元素,并提供了巨大的元素和富有启动的元素。光元素分子(CO,CN,OH)以及Balmer线和Balmer跳跃(对于年轻的恒星物体尤其重要)。紫外线范围在阿拉加术研究中也至关重要:遥远星系的圆形介质,不同类型的来源对宇宙紫外线背景的贡献,在相对透明的层间培养基方面的测量和原始氘的测量以及爆炸性瞬变的随访。 Cubes项目于2021年6月完成了A阶段A概念设计,现在已经进入了详细的设计和施工阶段。计划于2028年进行首次科学运营。
In the era of Extremely Large Telescopes, the current generation of 8-10m facilities are likely to remain competitive at ground-UV wavelengths for the foreseeable future. The Cassegrain U-Band Efficient Spectrograph (CUBES) has been designed to provide high-efficiency (>40%) observations in the near UV (305-400 nm requirement, 300-420 nm goal) at a spectral resolving power of R>20,000 (with a lower-resolution, sky-limited mode of R ~ 7,000). With the design focusing on maximizing the instrument throughput (ensuring a Signal to Noise Ratio (SNR) ~20 per high-resolution element at 313 nm for U ~18.5 mag objects in 1h of observations), it will offer new possibilities in many fields of astrophysics, providing access to key lines of stellar spectra: a tremendous diversity of iron-peak and heavy elements, lighter elements (in particular Beryllium) and light-element molecules (CO, CN, OH), as well as Balmer lines and the Balmer jump (particularly important for young stellar objects). The UV range is also critical in extragalactic studies: the circumgalactic medium of distant galaxies, the contribution of different types of sources to the cosmic UV background, the measurement of H2 and primordial Deuterium in a regime of relatively transparent intergalactic medium, and follow-up of explosive transients. The CUBES project completed a Phase A conceptual design in June 2021 and has now entered the detailed design and construction phase. First science operations are planned for 2028.