论文标题

一种快速的文本驱动方法来生成艺术内容

A Fast Text-Driven Approach for Generating Artistic Content

论文作者

Lupascu, Marian, Murdock, Ryan, Mironica, Ionut, Li, Yijun

论文摘要

在这项工作中,我们提出了一个生成视觉艺术的完整框架。与以前不使用样式参数灵活的样式化方法(即它们仅使用一个样式图像,单个样式化文本或来自某个域中的内容图像的样式化允许样式化),我们的方法没有这种限制。此外,我们实施了一个改进的版本,该版本可以以不同程度的细节,样式和结构生成各种结果,并提高生成速度。为了进一步增强结果,我们将艺术超分辨率模块插入生成管道中。该模块将带来其他细节,例如特定于画家的模式,轻微的刷子标记等。

In this work, we propose a complete framework that generates visual art. Unlike previous stylization methods that are not flexible with style parameters (i.e., they allow stylization with only one style image, a single stylization text or stylization of a content image from a certain domain), our method has no such restriction. In addition, we implement an improved version that can generate a wide range of results with varying degrees of detail, style and structure, with a boost in generation speed. To further enhance the results, we insert an artistic super-resolution module in the generative pipeline. This module will bring additional details such as patterns specific to painters, slight brush marks, and so on.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源