论文标题

变压器量子状态:量子多体问题的多功能模型

Transformer Quantum State: A Multi-Purpose Model for Quantum Many-Body Problems

论文作者

Zhang, Yuan-Hang, Di Ventra, Massimiliano

论文摘要

受到基于变形金刚的大语言模型进步的启发,我们介绍了变压器量子状态(TQS):一种用于量子多体问题的多功能机器学习模型。与哈密顿/任务特定模型形成鲜明对比的是,TQ可以生成整个相图,通过实验测量来预测现场强度,并将这种知识传输到以前从未有过的新系统,所有这些知识都在单个模型中。通过特定的任务,微调TQs可以以较小的计算成本产生准确的结果。通过设计多功能,TQ可以很容易地适应新任务,从而指出了针对各种具有挑战性的量子问题的通用模型。

Inspired by the advancements in large language models based on transformers, we introduce the transformer quantum state (TQS): a versatile machine learning model for quantum many-body problems. In sharp contrast to Hamiltonian/task specific models, TQS can generate the entire phase diagram, predict field strengths with experimental measurements, and transfer such a knowledge to new systems it has never been trained on before, all within a single model. With specific tasks, fine-tuning the TQS produces accurate results with small computational cost. Versatile by design, TQS can be easily adapted to new tasks, thereby pointing towards a general-purpose model for various challenging quantum problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源