论文标题

使用洛万(Lorawan)的强化学习方案轻巧的传输参数选择方案

A Lightweight Transmission Parameter Selection Scheme Using Reinforcement Learning for LoRaWAN

论文作者

Li, Aohan, Urabe, Ikumi, Fujisawa, Minoru, Hasegawa, So, Yasuda, Hiroyuki, Kim, Song-Ju, Hasegawa, Mikio

论文摘要

预计到2023年,物联网设备的数量将达到1,250亿。物联网设备的增长将加剧设备之间的碰撞,从而降低通信性能。选择适当的传输参数,例如通道和扩展因子(SF),可以有效地减少远程(LORA)设备之间的碰撞。但是,当前文献中提出的大多数方案在具有有限的计算复杂性和内存的物联网设备上都不容易实现。为了解决此问题,我们提出了一种轻巧的传输参数选择方案,即使用用于低功率大区域网络(Lorawan)的增强学习的联合通道和SF选择方案。在拟议的方案中,可以仅使用确认(ACK)信息来选择适当的传输参数。此外,我们从理论上分析了我们提出的方案的计算复杂性和记忆要求,该方案验证了我们所提出的方案可以选择具有极低计算复杂性和内存要求的传输参数。此外,在现实世界中的洛拉设备上实施了大量实验,以评估我们提出的计划的有效性。实验结果证明了以下主要现象。 (1)与其他轻型传输参数选择方案相比,我们在Lorawan中提出的方案可以有效避免Lora设备之间的碰撞,而与可用通道的变化无关。 (2)可以通过选择访问通道和使用SFS而不是仅选择访问渠道来提高帧成功率(FSR)。 (3)由于相邻通道之间存在干扰,因此可以通过增加相邻可用通道的间隔来提高FSR和公平性。

The number of IoT devices is predicted to reach 125 billion by 2023. The growth of IoT devices will intensify the collisions between devices, degrading communication performance. Selecting appropriate transmission parameters, such as channel and spreading factor (SF), can effectively reduce the collisions between long-range (LoRa) devices. However, most of the schemes proposed in the current literature are not easy to implement on an IoT device with limited computational complexity and memory. To solve this issue, we propose a lightweight transmission-parameter selection scheme, i.e., a joint channel and SF selection scheme using reinforcement learning for low-power wide area networking (LoRaWAN). In the proposed scheme, appropriate transmission parameters can be selected by simple four arithmetic operations using only Acknowledge (ACK) information. Additionally, we theoretically analyze the computational complexity and memory requirement of our proposed scheme, which verified that our proposed scheme could select transmission parameters with extremely low computational complexity and memory requirement. Moreover, a large number of experiments were implemented on the LoRa devices in the real world to evaluate the effectiveness of our proposed scheme. The experimental results demonstrate the following main phenomena. (1) Compared to other lightweight transmission-parameter selection schemes, collisions between LoRa devices can be efficiently avoided by our proposed scheme in LoRaWAN irrespective of changes in the available channels. (2) The frame success rate (FSR) can be improved by selecting access channels and using SFs as opposed to only selecting access channels. (3) Since interference exists between adjacent channels, FSR and fairness can be improved by increasing the interval of adjacent available channels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源