论文标题

地理空间互联19的可扩展计算算法在高性能计算中传播

Scalable Computational Algorithms for Geo-spatial Covid-19 Spread in High Performance Computing

论文作者

V., Sudhi P., Dolean, Victorita, Jolivet, Pierre, Robinson, Brandon, Edwards, Jodi D., Kendzerska, Tetyana, Sarkar, Abhijit

论文摘要

基于非线性偏微分方程(PDE)的COVID-19的隔室模型提供了在空间和时间上连续的感染痕迹。在空间离散化,基于临床相关类别的其他模型隔室和模型分层中,更精致的决议有助于增加数百万的未知数。我们采用平行可扩展的求解器,允许对这些高保真模型更快的解决方案。该求解器将域分解和代数多式预处理组合在多个级别上,以实现所需的强和弱的可伸缩性。作为这种通用方法的数值说明,使用五室易感性暴露的感染已被验证的(SEIRD)模型的Covid-19模型用于证明大型地理领域所提出的求解器的可扩展性和有效性(Southern Ontario)。可以在7小时内节省传统求解器所需的计算努力的几个小时内,预测系统大小为9200万(使用1780个过程)的系统大小(使用1780个流程)最多可以预测感染。

A nonlinear partial differential equation (PDE) based compartmental model of COVID-19 provides a continuous trace of infection over space and time. Finer resolutions in the spatial discretization, the inclusion of additional model compartments and model stratifications based on clinically relevant categories contribute to an increase in the number of unknowns to the order of millions. We adopt a parallel scalable solver allowing faster solutions for these high fidelity models. The solver combines domain decomposition and algebraic multigrid preconditioners at multiple levels to achieve the desired strong and weak scalability. As a numerical illustration of this general methodology, a five-compartment susceptible-exposed-infected-recovered-deceased (SEIRD) model of COVID-19 is used to demonstrate the scalability and effectiveness of the proposed solver for a large geographical domain (Southern Ontario). It is possible to predict the infections up to three months for a system size of 92 million (using 1780 processes) within 7 hours saving months of computational effort needed for the conventional solvers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源