论文标题

eGPDE-net:用外源变量建立时间序列预测的连续神经网络

EgPDE-Net: Building Continuous Neural Networks for Time Series Prediction with Exogenous Variables

论文作者

Gao, Penglei, Yang, Xi, Zhang, Rui, Guo, Ping, Goulermas, John Y., Huang, Kaizhu

论文摘要

虽然外源变量对时间序列分析的性能改善有重大影响,但在当前的连续方法中很少考虑串行间的相关性和时间依赖性。多元时间序列的动态系统可以用复杂的未知偏微分方程(PDE)建模,这些方程(PDE)在科学和工程的许多学科中都起着重要作用。在本文中,我们提出了一个任意步骤预测的连续时间模型,以学习多元时间序列中的未知PDE系统,其管理方程是通过自我注意和封闭的复发神经网络参数化的。所提出的模型\下划线{重要的是,可以使用特殊设计的正则化指导将模型简化为正规化的普通微分方程(ODE)问题,这使得可以处理的PDE问题可以获得数值解决方案,并且可以在任意时间点上预测目标序列的多个未来值。广泛的实验表明,我们提出的模型可以在强大的基准方面实现竞争精度:平均而言,它通过减少RMSE的$ 9.85 \%$和MAE的MAE $ 13.98 \%$的基线表现优于最佳基线,以进行任意步骤预测。

While exogenous variables have a major impact on performance improvement in time series analysis, inter-series correlation and time dependence among them are rarely considered in the present continuous methods. The dynamical systems of multivariate time series could be modelled with complex unknown partial differential equations (PDEs) which play a prominent role in many disciplines of science and engineering. In this paper, we propose a continuous-time model for arbitrary-step prediction to learn an unknown PDE system in multivariate time series whose governing equations are parameterised by self-attention and gated recurrent neural networks. The proposed model, \underline{E}xogenous-\underline{g}uided \underline{P}artial \underline{D}ifferential \underline{E}quation Network (EgPDE-Net), takes account of the relationships among the exogenous variables and their effects on the target series. Importantly, the model can be reduced into a regularised ordinary differential equation (ODE) problem with special designed regularisation guidance, which makes the PDE problem tractable to obtain numerical solutions and feasible to predict multiple future values of the target series at arbitrary time points. Extensive experiments demonstrate that our proposed model could achieve competitive accuracy over strong baselines: on average, it outperforms the best baseline by reducing $9.85\%$ on RMSE and $13.98\%$ on MAE for arbitrary-step prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源