论文标题

最大最小反馈顶点集:参数化的视角

Maximum Minimal Feedback Vertex Set: A Parameterized Perspective

论文作者

Gaikwad, Ajinkya, Kumar, Hitendra, Maity, Soumen, Saurabh, Saket, Tripathi, Shuvam Kant

论文摘要

在本文中,我们研究了经典反馈顶点集(FVS)问题的最大化版本,即在参数化复杂性的领域中,最大最大FVS问题。在此问题中,鉴于无向图$ g $,一个正整数$ k $,问题是要检查$ g $是否具有最小的反馈顶点大小至少至少$ k $。我们获得了最大最小FVS的以下结果。 1)我们首先设计了一个固定参数可处理的(FPT)算法,用于最大最低fvs,以$ 10^kn^{\ Mathcal {o}(O}(1)} $运行。 2)接下来,我们考虑通过输入图的顶点封面编号(用$ \ Mathsf {vc}(g)$表示)的问题,并设计具有运行时间$ 2^{\ Mathcal {o}的算法\ Mathsf {vc}(g))} n^{\ Mathcal {O}(1)} $。我们通过证明$ \ mathsf {vc}(g)$参数化的问题来补充这一结果,除非conp $ \ subseteq $ np/poly,否则除非conp $ \ subseteq $ np/poly。 3)最后,我们给出了由$ \ mathsf {vc}(g)$参数化的fpt-approximation方案(fpt-as)。也就是说,我们设计了一种算法,每$ε> 0 $,按时运行$ 2^{\ mathcal {o} \ left(\ frac {\ frac {\ mathsf {vc}(vc}(g)}(g)}ε\ right)} n^{n^{\ nathcal {\ nathcal {\ natercal {o} $} $(1-ε){\ sf opt} $。

In this paper we study a maximization version of the classical Feedback Vertex Set (FVS) problem, namely, the Max Min FVS problem, in the realm of parameterized complexity. In this problem, given an undirected graph $G$, a positive integer $k$, the question is to check whether $G$ has a minimal feedback vertex set of size at least $k$. We obtain following results for Max Min FVS. 1) We first design a fixed parameter tractable (FPT) algorithm for Max Min FVS running in time $10^kn^{\mathcal{O}(1)}$. 2) Next, we consider the problem parameterized by the vertex cover number of the input graph (denoted by $\mathsf{vc}(G)$), and design an algorithm with running time $2^{\mathcal{O}(\mathsf{vc}(G)\log \mathsf{vc}(G))}n^{\mathcal{O}(1)}$. We complement this result by showing that the problem parameterized by $\mathsf{vc}(G)$ does not admit a polynomial compression unless coNP $\subseteq$ NP/poly. 3) Finally, we give an FPT-approximation scheme (fpt-AS) parameterized by $\mathsf{vc}(G)$. That is, we design an algorithm that for every $ε>0$, runs in time $2^{\mathcal{O}\left(\frac{\mathsf{vc}(G)}ε\right)} n^{\mathcal{O}(1)}$ and returns a minimal feedback vertex set of size at least $(1-ε){\sf opt}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源