论文标题

基于视觉的安全系统,用于无障碍的人类机器人协作

Vision-Based Safety System for Barrierless Human-Robot Collaboration

论文作者

Amaya-Mejía, Lina María, Duque-Suárez, Nicolás, Jaramillo-Ramírez, Daniel, Martinez, Carol

论文摘要

在工业机器人附近工作时,人体安全一直是重中之重。随着人类机器人协作环境的兴起,避免碰撞的物理障碍已经消失,增加了事故的风险以及需要确保安全的人类机器人协作的解决方案。本文提出了一个安全系统,该系统实现速度和分离监控(SSM)的操作类型。为此,遵循工业协作机器人当前标准的机器人工作区中定义了安全区域。基于深度学习的计算机视觉系统可检测,轨道和估计机器人附近的操作员的3D位置。机器人控制系统接收操作员的3D位置,并在模拟环境中生成其3D表示。根据检测到最接近操作员的区域,机器人停止或更改其工作速度。呈现人类和机器人相互作用的三种不同的操作模式。结果表明,基于视觉的系统可以正确检测和分类操作员的安全区域,并且不同的操作模式确保机器人的反应和停止时间在所需的时间限制之内以确保安全性。

Human safety has always been the main priority when working near an industrial robot. With the rise of Human-Robot Collaborative environments, physical barriers to avoiding collisions have been disappearing, increasing the risk of accidents and the need for solutions that ensure a safe Human-Robot Collaboration. This paper proposes a safety system that implements Speed and Separation Monitoring (SSM) type of operation. For this, safety zones are defined in the robot's workspace following current standards for industrial collaborative robots. A deep learning-based computer vision system detects, tracks, and estimates the 3D position of operators close to the robot. The robot control system receives the operator's 3D position and generates 3D representations of them in a simulation environment. Depending on the zone where the closest operator was detected, the robot stops or changes its operating speed. Three different operation modes in which the human and robot interact are presented. Results show that the vision-based system can correctly detect and classify in which safety zone an operator is located and that the different proposed operation modes ensure that the robot's reaction and stop time are within the required time limits to guarantee safety.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源