论文标题

YOLO-FACEV2:量表和咬合意识到的面部探测器

YOLO-FaceV2: A Scale and Occlusion Aware Face Detector

论文作者

Yu, Ziping, Huang, Hongbo, Chen, Weijun, Su, Yongxin, Liu, Yahui, Wang, Xiuying

论文摘要

近年来,基于深度学习的面部检测算法取得了长足的进步。这些算法通常可以分为两类,即诸如更快的R-CNN和像Yolo这样的一个阶段检测器之类的两个阶段检测器。由于准确性和速度之间的平衡更好,因此在许多应用中广泛使用了一个阶段探测器。在本文中,我们提出了一个基于单级检测器Yolov5的实时面部检测器,名为Yolo-Facev2。我们设计一个称为RFE的接收场增强模块,以增强小面的接受场,并使用NWD损失来弥补IOU对微小物体的位置偏差的敏感性。对于面部阻塞,我们提出了一个名为Seam的注意力模块,并引入了排斥损失以解决它。此外,我们使用重量函数幻灯片来解决简单和硬样品之间的不平衡,并使用有效接收场的信息来设计锚。宽面数据集上的实验结果表明,我们的面部检测器的表现都优于Yolo及其变体,可以在所有简单,中和硬子集中找到。源代码https://github.com/krasjet-yu/yolo-facev2

In recent years, face detection algorithms based on deep learning have made great progress. These algorithms can be generally divided into two categories, i.e. two-stage detector like Faster R-CNN and one-stage detector like YOLO. Because of the better balance between accuracy and speed, one-stage detectors have been widely used in many applications. In this paper, we propose a real-time face detector based on the one-stage detector YOLOv5, named YOLO-FaceV2. We design a Receptive Field Enhancement module called RFE to enhance receptive field of small face, and use NWD Loss to make up for the sensitivity of IoU to the location deviation of tiny objects. For face occlusion, we present an attention module named SEAM and introduce Repulsion Loss to solve it. Moreover, we use a weight function Slide to solve the imbalance between easy and hard samples and use the information of the effective receptive field to design the anchor. The experimental results on WiderFace dataset show that our face detector outperforms YOLO and its variants can be find in all easy, medium and hard subsets. Source code in https://github.com/Krasjet-Yu/YOLO-FaceV2

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源