论文标题
大规模分析歌曲中的性别偏见和性别歧视
Large scale analysis of gender bias and sexism in song lyrics
论文作者
论文摘要
我们采用自然语言处理技术来分析“ 200万首歌数据库”语料库中的377808英文歌曲歌词,重点介绍了五十年(1960- 2010年)的性别歧视表达和性别偏见的测量。使用性别歧视分类器,我们比以前的研究使用手动注释的流行歌曲样本来确定性别歧视歌词。此外,我们通过测量在歌曲歌词中学到的单词嵌入中的关联来揭示性别偏见。我们发现性别歧视的内容可以随着时间的流逝而增加,尤其是从男性艺术家和出现在Billboard图表中的流行歌曲。根据表演者的性别,歌曲还显示出不同的语言偏见,男性独奏艺术家歌曲包含更多和更强烈的偏见。这是对此类类型的第一个大规模分析,在流行文化的如此有影响力的一部分中,可以深入了解语言使用。
We employ Natural Language Processing techniques to analyse 377808 English song lyrics from the "Two Million Song Database" corpus, focusing on the expression of sexism across five decades (1960-2010) and the measurement of gender biases. Using a sexism classifier, we identify sexist lyrics at a larger scale than previous studies using small samples of manually annotated popular songs. Furthermore, we reveal gender biases by measuring associations in word embeddings learned on song lyrics. We find sexist content to increase across time, especially from male artists and for popular songs appearing in Billboard charts. Songs are also shown to contain different language biases depending on the gender of the performer, with male solo artist songs containing more and stronger biases. This is the first large scale analysis of this type, giving insights into language usage in such an influential part of popular culture.