论文标题

奇数单价多项式的极端问题

An extremal problem for odd univalent polynomials

论文作者

Dmitrishin, Dmitriy, Gray, Daniel, Stokolos, Alexander, Tarasenko, Iryna

论文摘要

对于单价多项式$ f(z)= \ sum \ limits_ {j = 1}^{n} a_j z^{2J-1} $带有真实系数和归一化\(a_1 = 1 \),我们解决了极端问题\ [ \ min_ {a_j:\,a_1 = 1} \ left(-if(i)\ right)= \ min_ {a_j:\,a_1 = 1} \ sum \ sum \ limits_ { \]我们证明该解决方案为$ \ frac12 \ sec^2 {\fracπ{2n+2}}},$和极端多项式\ [ \ sum_ {j = 1}^n \ frac {u'_ {2(n-j+1)} \ left(\ cos \ left(\fracπ{2n+2} \ right)\ right)}} { \ cos \ left(\fracπ{2n+2} \ right)\ right)} z^{2J-1} \]是唯一的,无用的,其中$ u_j(x)$是第二种的chebyshev polynomials,而$ u'_j(x)$表示派生。作为应用程序,我们获得了$ \ Mathbb d $中奇数单价多项式的Koebe半径的估计,并提出了几种猜想。

For the univalent polynomials $F(z) = \sum\limits_{j=1}^{N} a_j z^{2j-1}$ with real coefficients and normalization \(a_1 = 1\) we solve the extremal problem \[ \min_{a_j:\,a_1=1} \left( -iF(i) \right) = \min_{a_j:\,a_1=1} \sum\limits_{j=1}^{N} {(-1)^{j+1} a_j}. \] We show that the solution is $\frac12 \sec^2{\fracπ{2N+2}},$ and the extremal polynomial \[ \sum_{j = 1}^N \frac{U'_{2(N-j+1)} \left( \cos\left(\fracπ{2N+2}\right)\right)}{U'_{2N} \left( \cos\left(\fracπ{2N+2}\right)\right)}z^{2j-1} \] is unique and univalent, where the $U_j(x)$ are the Chebyshev polynomials of the second kind and $U'_j(x)$ denotes the derivative. As an application, we obtain the estimate of the Koebe radius for the odd univalent polynomials in $\mathbb D$ and formulate several conjectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源