论文标题

在$ {\ rm sl}的Borel Anosov子组上(D,\ Mathbb {r})$

On Borel Anosov subgroups of ${\rm SL}(d,\mathbb{R})$

论文作者

Dey, Subhadip

论文摘要

我们研究了完整标志歧管的抗podal子集$ \ mathcal {f}(\ mathbb {r}^d)$。结果,对于自然数量$ d \ ge 2 $,以至于$ d \ ne 5 $和$ d \ equiv 0,\ pm1 \ mod 8 $,我们表明$ {\ rm sl}(\ rm sl}(d,d,d,d,\ m athbb {r})$的borel anosov子组实际上是一个免费的组,或者是一个免费的组。这给了安德烈斯·萨姆巴里诺(AndrésSambarino)问的一个问题。此外,我们显示了对双曲线空间的限制,将均匀的常规准静电嵌入到对称空间中$ x_d $ of $ {\ rm sl}(d,d,\ mathbb {r})$。

We study the antipodal subsets of the full flag manifolds $\mathcal{F}(\mathbb{R}^d)$. As a consequence, for natural numbers $d \ge 2$ such that $d\ne 5$ and $d \not\equiv 0,\pm1 \mod 8$, we show that Borel Anosov subgroups of ${\rm SL}(d,\mathbb{R})$ are virtually isomorphic to either a free group or the fundamental group of a closed hyperbolic surface. This gives a partial answer to a question asked by Andrés Sambarino. Furthermore, we show restrictions on the hyperbolic spaces admitting uniformly regular quasi-isometric embeddings into the symmetric space $X_d$ of ${\rm SL}(d,\mathbb{R})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源