论文标题

探索$ \ boldsymbol {2+2} $答案$ \ boldsymbol {3+1} $问题

Exploring $\boldsymbol{2+2}$ Answers to $\boldsymbol{3+1}$ Questions

论文作者

Heckman, Jonathan J., Joyce, Austin, Sakstein, Jeremy, Trodden, Mark

论文摘要

我们探讨了在克莱琳(即$ 2+2 $)中签名的物理学的潜在用途,作为了解Lorentzian(即$ 3+1 $)签名的物理特性的工具。就像欧几里得(即$ 4+0 $)的签名数量一样,可以用来正式构建洛伦兹签名量子量子场理论的基态波函数,在分析延伸方向上,与克莱琳的签名相似的分析性延续与克莱恩的签名构建了低粒子频率的状态。 $ 2+2 $签名也有天然的超对称代数,该代数可限制相关函数的结构。 Lorentz对称性的自发断裂可以产生各种$ \ MATHCAL {N} = 1/2 $ supersymmetry代数,该代数在$ 3 + 1 $ signature中对应于非苏格拉对应系统。我们推测这些结构在解决宇宙恒定问题中的可能作用。

We explore potential uses of physics formulated in Kleinian (i.e., $2+2$) signature spacetimes as a tool for understanding properties of physics in Lorentzian (i.e., $3+1$) signature. Much as Euclidean (i.e., $4+0$) signature quantities can be used to formally construct the ground state wavefunction of a Lorentzian signature quantum field theory, a similar analytic continuation to Kleinian signature constructs a state of low particle flux in the direction of analytic continuation. There is also a natural supersymmetry algebra available in $2+2$ signature, which serves to constrain the structure of correlation functions. Spontaneous breaking of Lorentz symmetry can produce various $\mathcal{N} = 1/2$ supersymmetry algebras that in $3 + 1$ signature correspond to non-supersymmetric systems. We speculate on the possible role of these structures in addressing the cosmological constant problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源